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Abstract: We introduce Language-Informed Latent Actions (LILA), a framework
for learning natural language interfaces in the context of human-robot collabora-
tion. LILA falls under the shared autonomy paradigm: in addition to providing
discrete language inputs, humans are given a low-dimensional controller — e.g.,
a 2 degree-of-freedom (DoF) joystick that can move left/right and up/down — for
operating the robot. LILA learns to use language to modulate this controller, pro-
viding users with a language-informed control space: given an instruction like
“place the cereal bowl on the tray,” LILA may learn a 2-DoF space where one
dimension controls the distance from the robot’s end-effector to the bowl, and the
other dimension controls the robot’s end-effector pose relative to the grasp point
on the bowl. We evaluate LILA with real-world user studies, where users can pro-
vide a language instruction while operating a 7-DoF Franka Emika Panda Arm to
complete a series of complex manipulation tasks. We show that LILA models are
not only more sample efficient and performant than imitation learning and end-
effector control baselines, but that they are also qualitatively preferred by users.

Keywords: Language for Shared Autonomy, Language & Robotics, Learned La-
tent Actions, Human-Robot Interaction

1 Introduction

Nearly a million American adults live with physical disabilities, requiring assistance for everyday
tasks like taking a bite of food, or pouring a glass of milk [ 1] — assistance that robots could provide.
Paradigms for efficient human-robot collaboration that strike a balance between robot autonomy
and human control such as shared autonomy [2, 3, 4, 5] present a promising path towards building
such assistive systems. Unlike full autonomy approaches that enforce a sharp separation between
user intent and robot execution, falling prey to problems of sample efficiency and robustness, shared
autonomy couples a human’s input with automated robot assistance. Consider a kitchen or dining
environment where a high-dimensional (high-DoF) robot such as a wheelchair-mounted manipulator
aids a human who may be physically unable to perform tasks requiring fine-grained manipulation.
While the human can manually teleoperate the arm by fully controlling individual “modes”, or sepa-
rate degrees-of-freedom of the robot’s end-effector, past work has shown this to be unintuitive, slow,
and frustrating [3, 6]. Shared autonomy approaches such as learned latent actions [5, 7, 8] however,
build intuitive low-dimensional controllers for high-DoF robots via dimensionality reduction.

Specifically, learned latent actions models learn state-conditioned auto-encoders directly from
datasets of (state, action) pairs; the encoder takes the current state and action, and compresses it
to a latent action z with the same dimensionality as the human control interface (e.g., 2-DoF). This
is fed to a decoder to try to reconstruct the original high-dimensional action. While these approaches
are reliable and sample efficient, they are limited by their reliance on just the current state: given
tasks like “grab the milk™ and “shift the milk to the side” that overlap in state space, these controllers
fail as the models lack sufficient information to disambiguate behavior.

To address this concern, we consider incorporating natural language within this framework to add an
additional conditioning variable for structuring the control space. Prior work integrates language in
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Figure 1: [Left] Our breakfast buffet environment with several diverse manipulation tasks. By
providing both natural language input and low-dimensional joystick control [Middle], users dis-
ambiguate between different tasks while retaining the ability to maneuver through the environ-
ment. This is enabled by our [Right] language-informed latent actions (LILA) models that use
auto-encoders to learn language & state-conditioned low-DoF latent spaces for meaningful control.

robotics settings for similar purposes within the full autonomy paradigm [9, 10, 11, 12, 13]. Unfor-
tunately, these approaches suffer from poor sample efficiency, failure recovery, and generalization;
many issues that shared autonomy methods including learned latent actions seek to address. By
joining language and latent actions, a user can express an utterance u = “grab the cereal bowl” and
obtain a control space that is both state and language conditioned (Fig. | [Right]).

We introduce Language-Informed Latent Actions (LILA), a framework for incorporating language
into learned latent actions. Key to LILA is the principle that language modulates a user’s low-level
controller based on their provided utterance; as intuition, given the utterance “grab the cereal bowl”
as in Fig. |, our assistive robot might learn a semantically meaningful, low-dimensional (2-DoF)
control space where one dimension (one joystick axis) may control the distance from the robot’s
end-effector to the cereal bowl, whereas the other might control the angle of the end-effector relative
to the bowl such that the robot’s gripper can obtain a solid grasp of the object. Other utterances can
modulate the controller in similar ways — “pour the milk into the cup” might result in a learned
control space where one joystick dimension controls the jug’s pouring angle, while the other may
control its height. Language not only serves as a natural means for a human to communicate their
intent to the robot, but also helps disambiguate across a wide variety of objectives as well, by
inducing language and state-conditioned control spaces.

A core part of our method is its ability to handle diverse, realistic language. To this end, we collect a
small, crowdsourced dataset of natural language descriptions to describe each of our training demon-
strations; we use this real, natural language as the only input while training our models. To allow for
out-of-the-box generalization to novel user utterances such as those that describe similar behaviors
but with different words or phrases, we tap into the power of pretrained models [14, 15]. We per-
form a comprehensive user study across 10 users who use natural language and our learned LILA
controllers to complete a variety of diverse manipulation tasks in a simplified assistive “breakfast
buffet” setting. Our results show that LILA models are not only more reliable, performant, and sam-
ple efficient than fully autonomous imitation learning and fully human-driven end-effector control
baselines, but are qualitatively preferred by users as well.

2 Related Work

We build LILA within a shared autonomy framework [2, 16], applied to assistive teleoperation
[17, 18]. We additionally build off of work at the intersection of language and robotics [19, 20, 21].
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Figure 2: [Left] Stylized example: navigating toward four points on a cross with a 1-DoF latent
action, where disambiguation is required. Standard latent action models fail, while LILA accurately
reaches the corners with the help of language. [Right] LILA decoder architecture. We embed
an utterance using a pretrained language model, then identify the closest exemplar in the training
set via similarity search. We feed the embedding for this exemplar through a feature-wise linear
modulation, or FiLM [46], layer that fuses language and state representations within the decoder.

Shared Autonomy & Assistive Teleoperation. Shared autonomy casts robot control as a collab-
orative process between humans and robots [2, 4, 16, 22]. While other work focuses on “blending”
human inputs with possibly task-agnostic policies within the same action space [23, 24], in this work,
we focus on assistive teleoperation, where a user is provided a low-dimensional controller (e.g., a
joystick, sip-and-puff device) to directly control a high-dimensional robot manipulator. Using these
controllers for end-effector control — e.g., via operational space control [25] — is incredibly difficult,
requiring frequent mode-switching to control specific robot DoFs [3, 26]. Instead, we adopt learned
latent actions [5, 7, 8, 27, 28] a framework that uses conditional auto-encoders [29] to learn task-
specific latent “action” spaces from demonstrations. These latent spaces match the dimensionality
of the low-DoF interface and provide semantically meaningful control. However, existing methods
fail to differentiate between tasks with overlapping states, hindering the ability to perform diverse
behaviors in a workspace (e.g., manipulating a jug of milk in different ways — pouring, placing in the
fridge, etc.). In this work, we use language for disambiguation; users naturally speak their intent,
conditioning latent action models to produce intuitive control spaces that align with user objectives.

Language-Informed Robotics. A variety of methods have sought to combine language and
robotics, spanning approaches that map language to planning primitives [9, 30, 31, 32, 33], per-
form imitation learning from demonstrations and instructions [1 1, 34, 35, 36], and pair language
instructions with reward functions for reinforcement learning [12, 37, 38]. Other approaches use
language in more nuanced ways, such as learning language-conditional reward functions directly
[39, 40, 41], or within adaptive frameworks, where language is used to correct or define new be-
havior [42, 43]. This list is not exhaustive; we present further discussion — including approaches
that combine language with other modalities — in the Appendix. However, all these approaches fall
within full autonomy: after providing an instruction, human users cede control over to the robot
policy, which then takes the actions necessary to perform a task.

While robots trained with these approaches can perform diverse tasks and generalize to new instruc-
tions, it is not without cost. Paramount is sample efficiency; imitation learning approaches often
require hundreds to thousands of demonstrations for learning to navigate [35, 44], and reinforce-
ment learning approaches can require millions of episodes of experience to learn robust policies
[12,45]. Whereas coarse behaviors are easy to learn, learning to recover from slight deviations from
the training data, or to perform precise motions in a sequence, is incredibly difficult. By casting our
approach, LILA, within a shared autonomy framework instead, we intelligently offload these parts
that are harder for robots — but easier and intuitive for humans — onto the user.

3 Formalizing Language for Assistive Teleoperation

Formalism. We formulate a user’s objective, or task, (on a per-user basis) as a fully-observable,
language-augmented, Markov Decision Process (MDP) M defined by the tuple (S,U, A, T, R,~)



Task Name Success Example User Study Input Mapped Training Data

Pick Banana 100%  yellow in purple — pick up the yellow banana
and place it into the purple
basket

Pick Fruit Basket 100% bring basket to center of pan — place the basket onto the
tray

Pick Cereal 100%  go to the left side of the cream bowl, — grab the cereal bowl and

go down, grab the cereal bowl, and put it on the tray
place it on the try

Pour Bowl 67%  pick up the cup of marbles and pour — pick and pour the cup of
them into the cereal bowl white balls into the bowl of

cereal
Pour Cup 100% pick up the clear cup with marbles — pick up the cup and pour

in it and pour it in the black mug the contents in the mug
with the coffee beans in it

Table 1: Example utterances provided by study participants paired with the retrieved exemplar per
. Success rate refers to the percentage of the time a user study utterance (over all utterances

in the study) was grounded to the correct task via our retrieval method. As each participant only

attempted 2 tasks, success rate can fluctuate significantly, as is the case with the Pour Bowl task.

similar to prior work in language-conditional robotics [10, 34, 42]. Let u € U denote a user’s
language utterance provided at the start of each episode, where U/ is the full set of language utterances
a user could provide to arobot. Let s € S C R™ be the robot’s state, and a € A C R™ be the robot’s
action: taking action a in state s results in a next state s’ according to the transition function 7'(s, a).
Given the language utterance u, the user implicitly defines a reward function R(s,u,a) € R; the
human and robot collaboratively maximize this reward subject to discount factor v € [0, 1].

Problem Statement. This MDP forms the basis of a shared autonomy task wherein a human is
equipped with a low-dimensional control interface for the robot. Let 2 € Z C R¢ where d < m be
the human’s control input to the robot, such as the d = 1 DoF controller in . Previous work
on learning latent actions for assistive teleoperation [5, 28] learn a decoder Dec(s,z) : S x Z — A
that maps user low-dimensional inputs z € Z and current state s € S to a high-dimensional action
a € A. However, in situations where state-conditioning is not enough to disambiguate a users’
intent, too low of a control input dimension d may lead to failure. Recalling the milk jug example,
we have multiple different behaviors we could execute if the end-effector were next to the milk. For
example, one might want to pick up the jug, shift it to the side, pour it, etc; conditioning only on the
state with a 2-DoF action space is not enough to recover all possible behaviors.

Instead, we aim to learn Dec(s,u,2) : S x U x Z — A that takes the user’s control input and
utterance u, and predicts the high-DoF action that matches the user’s objective. The utterance u acts
as additional conditioning information, producing control spaces that depend on both language and
state; this circumvents the disambiguation problem above.

4 Language-Informed Latent Actions (LILA)

We are given a dataset of demonstrations, where each demonstration contains an utterance u and
a trajectory 7 = {sg, ag, $1, a1 ... S7}. We split each demonstration into triples of (u, s;, a;) and
use these to learn a conditional auto-encoder, consisting of a language-conditional encoder Enc:
S XU x A — Z that maps to a latent z and a decoder Dec: S x U x Z — A that attempts to
reconstruct the original action a. We minimize the mean-squared error between the predicted and
the original action:

N

1
Lgne,pec = N E(DCC(%W,EHC(S“U“ ai)) — ai)2 )

We next discuss how we integrate language into the architecture of the encoder and decoder.



4.1 Integrating Language within the Latent Actions Architecture

We implement the encoder and decoder as multi-layer feed-forward networks, with the ReL.U acti-
vation as in prior work [7, 28]. We focus on the decoder here, but the encoder is symmetric. For
the decoder, we first concatenate the robot state s and latent action z, then feed the corresponding
vector through multiple ReLU layers (usually 2-3), upsampling to produce the high-dimensional
robot action. We next discuss how to incorporate language within this simple scaffold.

Pretrained language models such as BERT, T5, and GPT-3 [47, 48, 49] have revolutionized NLP,
providing powerful language representations. Inspired by their success when applied to robotics
and reinforcement learning tasks [38, 50, 51], we use a distilled RoBERTa-Base model [14], from
Sentence-Transformers [15] to encode utterances. This model is fine-tuned on a corpus of para-
phrases, allowing it to pick up on sentence-level semantics. We generate utterance embeddings by
performing mean-pooling over token embeddings for an utterance, as in prior work [38, 50]. We
incorporate these embeddings using feature-wise linear modulation (FiLM) layers [46] that fuse
language information with other features h by mapping language embeddings to parameters (v, 3)
of an affine transformation: ' = v x h + 3 ( ). Notably, this h is the representation received
after feeding the state and latent action (s, z) through the first layer of the decoder as described
above. Once the language transforms h — h’, we feed I’ to the subsequent layers of the decoder.

Nearest-Neighbor Retrieval at Inference. A major concern for work in language-conditioned
robotics is generalizing to novel language inputs. While it may be unreasonable to expect gen-
eralization to completely new tasks, for user-facing systems with a clear set of behaviors seen at
train time as in our work, there is an expectation that any language-informed system is capable of
handling moderate variations of utterances from the training set. To do this, adding linguistically
diverse data has been the gold standard [44, 51]; however, a new class of approaches have emerged
that sidestep additional data requirements by tapping into the potential of pretrained language mod-
els [43, 50]. These approaches frame language interpretation at inference, when interfacing with
real users, as a retrieval problem: each new user utterance v’ is embedded(with the same pretrained
model as above, then used to query a nearest neighbors store containing all training exemplars; once
the nearest neighbor w; has been identified, it replaces v’ as an input to LILA.

The key benefit of such an approach is the minimal mismatch between train and test language inputs:
all “test inputs” are drawn from the training set. This does mean, however, that user utterances that
describe new tasks, or are otherwise unachievable also get mapped to language seen at training.
While this limits the ability to perform novel tasks, it again highlights the benefits of the shared
autonomy paradigm — doubly so, considering the cost of a mistake in an assistive domain like the
one we consider in this work: if, while providing control inputs to the robot, a user feels the robot is
not acting in alignment with the user’s desired objective, they can always stop execution.

5 User Study

We evaluate LILA with a real-world user study on a 7-DoF Franka Emika Panda Arm, on a series
of 5 complex manipulation tasks. Each user is provided a 2-DoF joystick for control. We compare
against a non-learning, end-effector (EE) control baseline where users “mode switch,” controlling
the velocity of 2 axes of the end-effector pose at a given time — [(X, Y), (Z, Roll), (Pitch, Yaw)]. Lan-
guage utterances u are typed into a text console for simplicity; future work could extend this work
by using off-the-shelf speech recognition systems. We also compare against a fully autonomous
imitation learning (IL) strategy where users solely provide language inputs, and the robot attempts
to perform a task without additional input. Ostensibly missing is a no-language variant of the latent
actions model, in keeping with prior work; however, upon evaluating this model, we found it to
be unintuitive and unable to make progress or solve any task, so we omit it from our user study.
However, further experiments and analysis can be found in the Appendix.

Environment. shows our “breakfast buffet” setting, a scaled down version of an assistive
feeding domain. We define 5 tasks: 1) Place Banana: placing the banana in the purple fruit basket,

YImplementation can be found in the open-source code repository: .
3Experiments with the no-language baseline and extra analysis showing the necessity of extra conditioning
information can be found here:
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Figure 3: Quantitative Results. We average success rate [Left] across all sub-tasks for each control
method, and find that LILA is significantly (p < 0.05) more performant. However, the steep drop
in performance when completing the full task shows the difficulty of fine-grained control. We also
calculate jerk as an indicator of controller smoothness, for both user control inputs [Middle] and
end-effector position [Right]. Averaged across tasks and users, we find LILA leads to significantly
smoother control for users than end-effector control.

2) Place Basket: grasping the purple basket by the handles and dropping it on the tray, 3) Place
Bowl: grasping the green cereal bowl by its edge and moving it to the tray, 4) Pour Bowl: pouring
the blue cup of marbles (a proxy for milk) into the cereal bowl positioned on the tray, and 5) Pour
Cup: pouring the blue cup of marbles into the yellow coffee cup. shows idealized example
trajectories for the Place Bowl (blue) and Place Banana (orange) tasks.

These tasks vary in difficulty, requiring precise grasping and dexterous manipulation. We evalu-
ate partial success based on how many of the following 4 subtasks users are able to complete: 1)
Reaching: touching the desired object, 2) Grasping: executing a successful grasp, 3) Bring to
Target: successfully transporting the manipulated object, and 4) Task Completion.

Demonstration Collection. Both LILA and IL models require learning from (language, demon-
stration) pairs for all 5 tasks. We collect demonstrations kinesthetically as in prior work [7, 28],
recording joint states at a fixed frequency. We initially collected 15 demonstrations per task for each
method. However, on testing the IL. model, we found it incapable of performing even rudimentary
reaching behaviors. To give IL the best chance, we collected twice the number of demonstrations
(30 per task; 150 total), requiring an extra 2 hours of labor.

Crowdsourcing Language Annotation. To build a natural language interface for human-robot
collaboration, we collect language annotations for each task by crowdsourcing utterances. Our goal
was to capture the diverse ways users may refer to the objects and actions our tasks entail with-
out any additional information, simulating a real user interacting with our environment for the first
time. We recruited 30 workers on Amazon Mechanical Turk, showing only a video of a recorded
demonstration, and asked them to provide “a short instruction that you would want to provide the
robot to complete this task independently in the box below.”. However, this procedure resulted in
some annotations containing “spam”, or extremely out-of-domain text. To address this without in-
troducing our own bias on what constitutes “spam”, we filtered the data to identify workers who
consistently provided “noisy” annotations, measured by the cosine distance between the sentence
embedding (using any pretrained embeddings) of an annotator’s provided text and the average sen-
tence embedding aggregated over all other annotators for a given video. We used annotations from
the 15 least “noisy” annotators under this metric as our ground-truth utterances. Further details, as
well as example “spam” annotations that were filtered out, are in the Appendix. provides
examples of crowdworker utterances from our final dataset (rightmost column).

Participants & Procedure. We conducted our study with a participant pool of 10 university stu-
dents (5 female/5 male, age range 23.2 & 1.87). Four subjects had prior experience teleoperation a
robot arm.” We conduct a within-subjects study, where each participant completed 2 tasks, chosen
randomly, with each of the three methods. Users were given 2 trials to complete each tasks, and an

“Due to the COVID-19 pandemic and university restrictions, only those with pre-authorized access could
participate. See the COVID-19 considerations document in the Appendix for more details.
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Figure 4: Qualitative Results. Using a 7-point Likert scale, we ask users to evaluate each of the
3 control methods for different properties. With high significance (p < 0.05), we find that LILA
outperforms both imitation learning and end-effector control baselines on several metrics, including
degree of helpfulness provided and ease in completing tasks.

allotted 3 minutes per control strategy to practice. Users were also given a sheet describing con-
troller inputs and details for each control method, which we include in the Appendix. For imitation
learning and LILA controllers, which require language inputs, participants provided a natural lan-
guage utterance which which a proctor entered into the model — participants were allowed to verify
the proctor entered their input accurately. This user-provided language utterance is used as the query
in the nearest-neighbor retrieval described in ; the retrieval set consists of all training utterances
collected via the crowdsourcing procedure above. In addition to tracking quantitative success rates
(normalized, based on progress relative to each of the 4 defined subtasks), time taken per task, and
controller logs, we ask users to fill out a qualitative survey evaluating each method at the end of each
study. We present both quantitative and qualitative results below.

Quantitative Results. summarizes our objective results. We evaluate both full- and partial-
task success rates for each task across all control methods, in addition to computing smoothness
metrics directly on the logged user inputs and robot actions. Smoothness is a measure for intu-
itiveness when measured on user 2-DoF joystick inputs, ease of use when measured on the robot’s
end-effector pose, and implicit safety: a trajectory with high discontinuity in acceleration can lead to
rapid, unpredictable changes in the environment. Smoothness is negatively correlated with jerk, the
time-derivative of acceleration. We compute jerk by taking the second-order derivative of velocity,
and report average jerk across fixed windows.

Our results show that LILA significantly (p < 0.05) outperforms both methods across all sub-tasks,
and is also smoother to use both in control input space (2-DoF input) and end-effector space (6-
DoF). However, the relative drop in performance of LILA for the final sub-task “Complete Task”
shows the room for improvement in fine-grained control, such as pouring motions. Additionally of
note is the poor performance of imitation learning. To explore this fully, we perform an ablation,
and show that sample inefficiency is a likely cause — especially since we are in a low-data regime.
These results can be found in the Appendix.

Qualitative Results. summarizes our subjective results. We administered a 7-point Likert
scale survey after users finished performing tasks with each method; this survey included questions
around the perceived helpfulness of the model in completing the tasks (helpful) and whether the
participant would use the control method again (use again). The results show that LILA outperforms
both imitation learning and end-effector control across most qualitative metrics, with significant
results (p < 0.05) marked with an x. We additionally visualize samples of the observed end-effector
trajectories by individual users collected during our study for 3 of our 5 tasks in . Across all
tasks, LILA results in smoother end-effector trajectories than end-effector control, while imitation
learning comes close to the target object but is unable to complete the entire trajectory for the task.

3 Additional experiment videos, and a results of the imitation learning ablation can be found here:


https://sites.google.com/view/lila-corl21/home/il-ablation
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Figure 5: Trajectories from one user comparing three different control methods 3 out of our 5 tasks
— Pour Cup, Pick Cereal, and Pick Banana. LILA provides smooth actions that immediately
approach the target object for a task, while end-effector control shows more rigid motions that result
in users diverging from their intended paths. While imitation learning also enables smooth motions,
it often fails shortly after reaching objects, hence the shortened trajectories.

6 Discussion

Summary. We present Language-Informed Latent Actions (LILA) a framework that marks the
first step in combining the expressiveness and naturalness of language for specifying and execut-
ing on a human user’s objective within the context of assistive teleoperation. Our user study re-
sults show that when compared to fully autonomous, imitation learning approaches, LILA is more
sample-efficient and performant, training on half the number of task demonstrations, but obtaining
significantly higher success rates. Compared with no-learning end-effector control methods, we
again show LILA’s effectiveness at obtaining high success rates, but also demonstrate its ability to
produce intuitive low-dimensional control spaces from language input. Qualitatively, we find that
users prefer LILA to alternative methods across the board, opening the door for additional work on
language & latent actions.

Limitations and Future Work. Currently, LILA uses language as a mechanism for task disam-
biguation — in the current results, there is no mechanism for generalizing to completely unseen
tasks or language specifications. We believe that the ability to disambiguate with language, and the
integration of language within the latent actions framework is a strong research contribution, and
hope that future work looks to dynamic states — perhaps by leveraging visual latent actions [28] —
and to adapting to new utterances and tasks dynamically [43, 52]. Furthermore, while users found
LILA intuitive and natural, they found themselves wanting to further modulate the robot’s behavior
with language instructions during the course of execution. Many users, upon seeing the robot make
slight deviations from a desired path would instinctively provide spoken corrections — “a little to the

» o«

right”, “no, grasp it by the handle!” — indicating a desire for multi-resolution language control.

Shared Autonomy and LILA. LILA fits within the shared autonomy paradigm, where the role of
language has been underexplored. With LILA and shared autonomy approaches in general, humans
retain agency — they are responsible for robot motion, and if the robot moves in a way that is not
safe, or does not align with their objectives, they stop providing control and possibly reset, give a
new instruction, or drop into a more complex control mode. Behavior is interpretable — the latent
actions model, critically informed by language, produces intuitive control spaces that humans can
quickly grasp. Finally, language is natural — users specify their objectives as they would if speaking
to another person, and the robot uses that language to shape their control space. These properties
— preserving agency, maintaining interpretability, and leveraging the expressive and natural features
of language for specifying objectives — are critical for widespread human-robot collaboration, and
we hope this work presents a concrete step towards achieving that goal.
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We provide further details, experiments, and descriptions of the attached media, to reinforce the
results and conclusions from the main body of our paper. For a more fluid viewing experience
please look through our project website, where videos (and corresponding descriptions) are side-by-
side: . The top-level page contains videos from our
actual user study, showing the various models in practice, while the sub-pages contain additional
experiments exploring the poor performance of the imitation learning baseline in our work, as well
as justifications for the omission of the no-language latent actions baseline.

We additionally provide a full version of our code repository at the following url:
, with a detailed README spanning the entire LILA pipeline from demonstration
recording to training models, to deploying them on a robot.

A COVID-19 Impact Statement

Due to the ongoing COVID-19 Pandemic, the ability to run larger-scale user studies, and even have
reliable lab access for preparing experiments, was limited. We are in a University setting, and as
such, were susceptible to University restrictions.

All members of the authorship team had to go through a COVID-19 safety training, frequent testing,
as well as an official approval process to be granted permission to work in the robot lab. For User
Study participants, we were mostly limited to those with pre-existing access to the Engineering
Building (spanning both robotics and non-robotics students), as well as a limited number of other
University students granted approval to access other nearby buildings. This limited our ability to
launch a larger scale user study, with more than 10 participants from a more diverse population.

That being said, we strongly believe that our existing participant statistics — 10 students (5 female/5
male, age range 23.2 £ 1.87 — reflect a broader user pool. Coupled with the statistical significance
of the results we have already collected, we feel that the User Study results remain compelling, and
our conclusions hold. That being said, we would like to run additional studies once COVID-19
restrictions relax in our area.

B Related Work Discussion

The main body of our paper contains a cursory discussion of different approaches for language-
informed robotics, spanning a multitude of full-autonomy solutions. While this discussion helps
provide contrast for our shared-autonomy & language based approach, LILA, it does not do the ex-
isting work in the field justice, nor does it discuss the data, implementation, and feature-engineering
considerations that are coupled with these different approaches.

First, we discuss work that leverages structured logical forms as an intermediate representation for
mapping language. The benefits of these forms are that they induce logical forms — functional, often
programmatic — representations of meaning, that can then be executed on a robot, either by directly
formulating a plan (requiring a model of the environment), or learning a lightweight policy from
data that can fulfill these logical forms. A perceived benefit of these types of approaches is their
sample efficiency — by leveraging a highly structured logical form and possibly hand-engineered
features, one can learn the language to logical form mapping with 10s of examples. An example
of this work is MacGlashan et al. [39] that learns reward functions given hand-engineered linguistic
features; however, these reward functions are fed to a planner (requiring full knowledge of world
dynamics — a huge assumption) to generate robot behavior. Follow-up work by Arumugam et al. [10]
relax the hand-engineered language feature assumption by using more recent neural approaches, but
still hinge on using planners. While these approaches are sample-efficient, many of the assumptions
around planning and full dynamics are strong, and limit the potential of scaling this work (and for
manipulation, are not necessarily straightforward!).

Other work that relaxes the planning/dynamics assumption is Duvallet et al. [53]; this work uses
hand-engineered features on top of a popular logical form — Spatial Description Clauses (SDCs) —
to learn policies for robot navigation. While seemingly as sample efficient as the prior approaches
without the downsides, there is still a high cost for policy learning. Though the approach only
required 10s of examples to learn to map language to the appropriate SDC, learning an effective
policy (note this is just discrete node navigation — not continuous manipulation) required running
DAgger [54] for 25 iterations on top of their existing data, collecting an order of magnitude more
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Figure 6: An overview of our language-informed latent actions (LILA) models with the FiLM mod-
ules highlighted. For additional clarity, we provide partial views of both the Encoder (during train-
ing) and Decoder (during deployment).

demonstration data (or demonstration edits/corrections as in DAgger) than originally given — 100s -
1000s of demonstrations.

On the other end of the spectrum are more recent approaches in end-to-end robot learning for more
complicated tasks spanning navigation [44, 51] and manipulation [55]. This work is done in simu-
lation, where one has the ability to do virtually infinite policy rollouts given a language instruction
paired with a reward function, to learn robust policies via reinforcement learning. Other work in this
paradigm that uses imitation learning, but with real-world deployments include works for quadcopter
flight [34] and some limited manipulation [ 3]. These works still require 1000s of demonstrations,
but use smart tricks for data augmentation and synthetic generation to learn robust policies.

LILA hopes to fill a void between these two classes of approaches; retaining the sample-efficiency
of the earlier approaches, without the need for hand-engineered features, strong assumptions about
known dynamics, or limited generalization potential. The experiments in the main body show that
LILA is extremely sample efficient; however, the scope of this work is mostly using language as a
means for disambiguation. It is our ardent hope that future work in language & latent actions (and
shared autonomy more generally) turns to more dynamic settings, richer language, and hard forms
of generalization; this work is just the first step.

Finally, we want to help fill out the story of language-informed robotics with work that does not nec-
essarily involve execution (learning a policy or control space for robots to follow language instruc-
tions), but that can help language-based methods generalize better, from less data, or that leverage
other modalities to help with specification. For example, Matuszek et al. [560] learn to map un-
scripted interactions consisting of language and gestures to object localizations from relatively few
interactions; such methods are crucial for scaling up LILA to multiple objects, referring expressions,
and compositional language instructions.

Other work looks at other modalities like speech and gesture to learn logical forms that allow for
efficient generalization [57]. Other work combines several modalities on top of language like gaze,
gesture, and intonation to further help lift representations of human intent from language [58, 59].
All this work, though not directly related to LILA in that they do not help learn meaningful control
spaces, do present possible avenues through which we might scale this approach to new contexts,
language instructions, and behaviors.

C Model Architectures & Training

Following from the main body of the paper, we provide additional details on the model architectures,
and additional data processing/augmentation we use in this work. We start with a more thorough de-
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scription of the feature-wise linear modulation (FiLM [46]) mechanism we use to integrate language
into the latent actions pipeline.

FiLM Architecture for LILA. Prior work in latent actions [7, 28] implement the latent action
models as simple feed-forward multi-layer perceptrons (MLPs) with tanh activations as the non-
linearity between layers. The Encoder and Decoder are symmetrical, with the Encoder encoding
a combination of (s,a) pairs down to the latent space z (via an intermediate layer or two), and
the decoder decoding from (s, z) back up to the 7-DoF action a. The intermediate layers in both
the Encoder and Decoder have the same dimensionality of 30 — we refer the reader to consult the
attached code for more detail.

With LILA, the two differences are that 1) we use the GELU activation instead of the tanh due to
its better stability, and 2) we incorporate language into this existing pipeline. Recall that we use a
version of the pretrained Distil-RoBERTA language model [ 15, 60] to generate embeddings of each
user utterance. These embeddings have dimensionality of 768, which far exceeds the dimensionality
of the 7-DoF (s, a) of the typical pipeline. Initial experiments attempting to naively concatenate the
language embedding with the 7-DoF states and actions (or states and z values, in the case of the
decoder) were not fruitful, as we were unable to learn (loss failed to decrease when training).

Instead, we turned to FiLM. The core principle with FiLM is that it’s a fusion mechanism that does
not increase the intrinsic parameter count of the core neural network (e.g., the original Latent Action
MLP described above). FiLM has found great success in many multi-modal tasks for this reason,
integrating with pre-existing pipelines in image classification to enable visual-question answering
[46], as well as integrating into existing pipelines for instruction following in reinforcement learning
[45, 41]. FiLM works as follows: given an intermediate representation from the Encoder or Decoder
h with dimensionality d (say after the first layer of the corresponding MLPs), and a language em-
bedding e, FiLM works in the following fashion:

FiLM-Geng(e) = e, (e
h/ =7 © h+ Be

where /' is the representation fed to later layers in the Encoder/Decoder MLP, and ® denotes the
Hadamard product (component-wise multiplication). Simply put, Film-Geny is a module that learns
to shape the representations learned by the core Latent Actions MLP, injecting language information
through this affine transformation defined by ., 8.. We implement Film-Geny as a separate two-
layer MLP that also uses the GELU activation. breaks this down visually, showing how the
FiLM modules are added for both the Encoder and Decoder.

Imitation Learning Architecture. For Imitation Learning, we do not have this Encoder-Decoder
structure, with two separate FILM modules. Instead, Imitation Learning is implemented as a single
MLP (of same parameter count/number of layers as the Encoder + Decoder in LILA) that conditions
on the state s; we add a single FILM module after the first-layer of this MLP.

Data Augmentation. There are two key aspects to our data augmentation procedure: 1) enforcing
latent action consistency, and 2) adding robustness to noise.

A key desire in latent action models is consistency in nearby states — executing the
same latent action z in nearby states should be roughly similar. More formally,
dr (T (s1,0(2,1,81)),dr (T (s2,6(z,1,82)))) < € for ||sy — s2]| < 4, for some €,§ > 0, where
dr is some distance metric (e.g., Euclidean distance between states). We enforce this with a sliding
window approach; given a sequence of states within a fixed window size, we train the decoder to
predict the same actions given the (z, [, s) triples for all states within the window.

The second, and most important augmentation we do is adding robustness to noise. Though we
collect a dataset of (s,l, a) triples, we use a unique property of our control space to obtain better
robustness: because our states are the actual joint states (let’s call this ¢), and actions a are just joint
velocities (¢), we can “re-compute” actions between two sequential states (s1, s2) by just taking the
finite difference ¢’ = s — s1. This allows us to do the following: add noise to each initial state
s; subject to € = N(0,0) (we use o = 0.01), then compute the “corresponding action” by taking
a’ = s;y1 — (s; + €). This can be viewed as a simulated version of the DART paradigm [61] for
noise-robust imitation learning.
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Figure 7: Visualized Trajectories for an Imitation Learning model trained on the “pure” data (that is
reported in the paper), and an Imitation Learning model trained on the “LILA-style” demonstrations
with the “sweeping” motions. On the left are trajectories for the instruction “grab the cereal bowl”
and on the right, “pour the blue cup into the black coffee mug” — these two examples are from our
training language set. We observe that Imitation Learning trained on the “LILA-style” demonstra-
tions performs slightly worse by not following the complete ideal task trajectory, although neither
approach is able to successfully complete the task.

We train LILA models with both the above augmentations. While the former augmentation mode
is not directly applicable to Imitation Learning approaches, the second noise augmentation mode is
— indeed, we find we have to triple the amount of such augmentations, in order to get even slightly
meaningful behavior from Imitation Learning models.

D Demonstration Collection

Both Latent Action models and Imitation Learning models require a dataset of language paired with
corresponding demonstrations to perform learning. As mentioned in the main body of the paper, we
collect these demonstrations kinesthetically, manually moving the robot arm to complete specific
tasks, recording the joint states and actions along the way. Critically, for imitation learning, these
demonstrations consist solely of what we call the “forward”, or “pure” demonstration of a task:
starting at the home position, perform each of the individual subtasks smoothly and continuously,
until the task has been satisfied. For a task like “put the banana in the fruit basket” this corresponds
to 1) smoothly reaching for the banana and grasping it, 2) lifting the banana up and moving over to
the basket, and 3) inserting the banana into the basket and releasing the gripper.

However, when collecting demonstrations for latent action models, we find that we can learn bet-
ter, more reliable models by changing up the demonstration process a little, incorporating discrete
segments of the demonstration where we back off and then repeat a motion. Concretely, for a task
like “put the banana in the fruit basket” this corresponds to 1) smoothly reaching for the banana,
pulling back to the home position, and then reaching for the banana again and grasping it, 2) lifting
the banana up, lowering it, then taking it to the basket, and 3) finally dropping the banana in the
basket. These “sweeping” back-and-forth motions intuitively help the latent actions model induce
control spaces that give users reversible control — the ability to move the robot back, rather than just
press forward; this is critical to usability and recoverability.

On the Fairness of Comparing Imitation Learning and LILA. Because LILA and Imitation
Learning are trained with different demonstrations, there is a plausible fear that our comparison
between LILA and Imitation Learning is unfair — specifically, because the latent actions demonstra-
tion incorporates extra motion, LILA technically may be seeing more (s, a) pairs per demonstration
compared to Imitation Learning, and can therefore learn better.
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LILA @3 No-Language Latent Actions

pick cereal pour cup

Figure 8: Visualized Trajectories for a No-Language Latent Actions model vs. LILA (with lan-
guage) trained on the same set of demonstrations, operated by an expert user. With the No-Language
Latent Actions model, the user tries their best to complete the task with the provided controls. On
the left are trajectories for the instruction “grab the cereal bowl” and on the right, “pour the blue
cup into the black coffee mug” — these two examples are from our training language set. We ob-
serve that the No-Language Latent Actions is unhelpful for completing the task, and unable to even
completely reach the target object for either task, demonstrating the importance of incorporating
language to help condition the learned latent actions.

We mitigate this in two ways; first, as a side effect of doubling the number of collected demon-
strations for Imitation Learning — recall that, in the main paper, to get IL to show semantically
meaningful behavior, we needed to collect 30 demonstrations per task instead of the 15 per task
LILA was given — we found that Imitation Learning sees 40% more (s, a) pairs than LILA (even
more if you account for the fact that we tripled the data augmentation for Imitation Learning!). Sec-
ond, Appendix E presents a more concrete experiment where we train the Imitation Learning model
on the LILA demonstrations, and show that the resulting model performs worse than when trained
on the standard IL dataset.

E Additional Experiments: Imitation Learning Baseline

A critical question from our user study has to do with the poor performance of the imitation learning
baseline relative to both LILA and End-Effector control. This section explores additional ablation
experiments as well as a technical argument for why imitation learning performs poorly — namely
due to sample inefficiency, exacerbated by our real-robot setting.

We also address the point raised in Appendix D — how Imitation Learning performs when trained
with the “latent actions” style demonstrations (“sweeping” motions) rather than the “pure,” straight-
through demonstrations.

Ablation Experiments. The following URL contains several sets of ablation experiments, with
corresponding text annotations: https://sites.google.com/view/lila-corl21/home/il-ablation.
Many of these experiments show qualitative behavior, and are best viewed via the linked URL;
however, we summarize the main findings here.

First, we put LILA and Imitation Learning on an equal footing, picking 3 of the 5 original tasks
we used in the user study — namely, Pick Cereal, Pick Fruit Basket, Pour Cup. We collect
10 demonstrations for each task, and trained a base model with the noise-based data augmentation
(add noise once for each state), for both LILA and Imitation Learning. We show that LILA is able
to fully succeed at all three of these tasks with only 10 demonstrations, whereas Imitation Learning
completely fails. However, we note that even at 10 demonstrations, Imitation Learning is starting
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Figure 9: We consider a sinusoidal trajectory of a simplified end-effector through 2D space, where
a robot’s motion is continuous. If we can sample states when collecting this “demonstration” at a
fixed interval, then the state-error of an imitation learning agent trained with behavior cloning grows
minimally over time. However, the fixed interval assumption may not be true when collecting data
on a real robot, where any noise can lead to compounding errors resulting in arbitrarily bad drift.
This example supports our observation of poor IL performance on the 7-DoF Franka Emika Panda
robot in our user study.

to show semantically meaningful behavior — for the Pick Cereal the end-effector clearly moves
toward the cereal bowl (though not close enough to grasp), and then down to the tray (though not
close enough to execute a successful drop).

We then experiment with the impact of data augmentation, first looking at 3x the amount of aug-
mentation (noising each state 3 times in the dataset following the procedure detailed above), and
then 5x. We show that Imitation Learning performance is slightly better than the reference with 3x
data augmentation, but that 5x doesn’t additionally help.

We then vary the number of demonstrations from 10 to 20, then 30 demonstrations per task, with 3x
data augmentation. Critically, we show that Imitation Learning improves as we add more demon-
strations, even though it still isn’t able to solve the tasks. As an interesting data point, at 20 demon-
strations, the Imitation Learning agent is able to execute a successful grasp of the cup (see the video
on the webpage), but cannot finish the task.

Unfortunately, after collecting 90 demonstrations (30 for each task), we felt we’d need close to
50-100 demonstrations per task to actually get imitation learning to solve these tasks — almost two
orders of magnitude more data than LILA needed. This would have been prohibitive to collect so
we stopped, and instead decided to analyze the possible cause of this extreme sample inefficiency.
Again, videos and annotations depicting these ablations visually, in an easy-to-follow format can be
found here:

Why is Imitation Learning Sample Inefficient? The above experiments point to an extreme
sample inefficiency in Imitation Learning. Imitation Learning is generally subject to problems of
cascading errors and the general noise problems of real robotics (imprecise resets, inherent noise
in robot joints). However, we will now present an argument that illustrates why Imitation Learning
and LILA may be even worse than expected in our real-robot setting, due to specific implementation
details in our publish/subscribe based methodology. Notably, there is imperfect communication
between the top-level Python process (housing the learned models) and the low-level C++ robot
controller that exacerbates the cascading errors imitation learning has to deal with. A graphical
walkthrough of this argument can be found at the bottom of the webpage for this section here:

Consider the sinusoidal trajectory of a simplified end-effector through 2D space shown in Figure
The robot’s motion is continuous, but we can sample states when collecting this demonstration”
at fixed intervals. Notably, this is an assumption present implicitly in most simulators (fixed frame
rate, or fixed control iterations/sec) — this is also usually true when operating with discrete action
spaces (move forward/right/left). However, this fixed interval assumption may not be true when
collecting data on a real robot, depending on the implementation. More on this in a bit, but for now,
let’s assume our demonstration data consists of evenly spaced (state, action) pairs with this fixed
interval between samples.
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Figure 10: We train 3 different latent action models for the cross disambiguation task from Figure 2
of the main paper, which showed a simple ’cross” example, where starting from the mid-point, the
goal is to be able to navigate towards all 4 possible directions. As the standard LA framework only
takes in the controller inputs, it is impossible for a user to succeed with only 1 degree-of-freedom
(DoF). To solve this task, we need an additional axis to condition on (at least 2-DoF). Our results
show that, as expected, without any additional input such as language, a 1-DoF controller (left) is
incapable of task disambiguation, with a clear 0% task success rate for our simple cross setting.

Consider training an imitation learning agent via behavioral cloning, where the policy is param-
eterized as a neural network. It’s not clear what a NN will do given a state outside it’s training
distribution (could be arbitrarily bad) , but to simplify, let’s assume given a new state, this policy
will predict an action based on retrieving the “nearest-neighbor” from it’s training demo. Assume
there’s some noise in the reset (this is representative — there’s always *some* noise in the initial
joint states - this is represented in simulators like Mujoco and PyBullet). If you roll out the imitation
learning policy, you get behavior like that shown in the middle of Figure 9 — critically, assuming the
same constant sampling rate, the state-error grows minimally over time. However, for continuous
state and continuous action robotics grounded in a real-world robot, this assumption does not exist,
which leads to the following point.

With our implementation on a 7-DoF Franka Emika Panda robot, we noticed that despite our best
efforts, we are not able to ensure states/actions are dispatched at a constant sampling rate. The
result (based on our straw man nearest-neighbors NN argument from above — though note the real
world behavior, especially in higher dimensions will be much much worse!) is shown in Figure
on the right. With slippage in the read/publish times of states and actions, we can read states too
early or too late, execute a bad” action, and cascade to arbitrarily bad final states over the course
of execution (even completely breaking in the middle of execution).

Imitation Learning with Latent Action Demonstrations. Finally, as raised in , there
is a question about the fairness of training on the “LILA-style” demonstrations with the “sweeping”
motion vs. the more pure, forward-only imitation learning demonstrations. To address this, we train
two Imitation Learning models (identical architecture, augmentation), with one model trained on the
original “pure” data (the model from the main paper, used in the user studies) and a model trained
on the “LILA-style” demonstrations with the sweeping behavior.

shows visualizations of the trajectories for the models rolled out on two instructions from
the training set. We see that the Imitation Learning model trained on the LILA demonstrations is
worse than the “standard” Imitation Learning model. Whereas the pure model is able to at least
closely reach the target objects, the other model attempts to reach for an object, but wastes time
moving around the object rather than focusing on the task trajectory — intuitively this makes sense,
as the “sweeping” motions present in the LILA data are confusing for imitation learning; given two
opposing actions in the same state, what should it do?

These experiments, coupled with the experiments in the main paper provide ample evidence that
the comparison between LILA and Imitation Learning is not only fair, but highlights the sample
efficiency of LILA as well.
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Algorithm 1 Filtering Language Utterances

1: for task=1,2,...,T do

2 Initialize list Fy,g.

3 foruser =1,2,..., N do

4: Append embedding of utterance embed (user, task) to Ei
5: end for
6

7

8

: end for
: foruser =1,2,..., N do
: Initialize list Dyger
9: for task =1,2,...,T do

10: Append cosine distance d between embed(user, task) and avg(Fik) t0 Dyger
11: end for
12: end for

13: Filter out all utterances from users with K highest avg(Dyer)

F Additional Experiments: No-Language Ablation

Another possible question is how latent actions performs without language — in other words, is LILA
necessary, or are prior latent actions models expressive enough to solve the tasks?

We answer this in two ways. First, we train a latent actions model, completely ablating the language
encoding pipeline (keeping architecture the same, but removing the FILM components described in

). The corresponding latent action decoder only takes in the latent action z and state
s as an input to predict high-DoF actions a. shows visualizations of trajectories for this
No-Language model as well as LILA operated by an expert user, trying to accomplish two specific
tasks. While LILA performs as expected, the No-Language model is unable to make progress at
all. As soon as control begins and the user moves the robot into a state close to any object, the
control space loses meaning, and the user is unable to recover, instead generating random behavior.
Again this makes sense; without language to condition on, the No-Language model has no idea
what task to perform. It lacks the ability to disambiguate tasks, and as such, cannot make progress.
We present additional videos and experiments to the above here:

Second, we train 3 different latent action models for the cross disambiguation task seen in Figure 2
of the main paper: A 1 DoF without language baseline, LILA (our proposed approach) with 1 DoF,
and a 2 DoF without language baseline. Each model is trained on a dataset of 100 demonstrations
collected across the 4 tasks. We then visualize movement trajectories (see ) by controlling
the latent action (z for 1 DoF, z; and 25 for 2 DoF). As expected, without any additional input such
as language, a 1-DoF controller is incapable of task disambiguation, with a clear 0% task success
rate for our simple cross setting. With both our 1-DoF controller w/ language input and a 2 DoF
controller, task disambiguation is possible — highlighting the necessity of additional information
of any modality. However, note that in large multi-task environments with dozens of tasks, re-
designing a controller can be difficult — language is a much more flexible and natural way to add this
information.

Together, these results motivate why no-language latent action baselines are incapable of being
useful for multi-task environments, as they are limited by total degrees of freedom of the controller.
Because the goal of our user study is to compare methods that could be useful for successful task
completion, If included, such a baseline would be uninformative as it would be impossible for any
user to achieve above a 0% task completion rate.

G Crowdsourcing & User Study

As described in the paper, to train LILA with language utterances, we hire crowdworkers on Amazon
Mechanical Turk to provide language utterances give video demonstrations of a human assisting
the robot arms. We paid crowdworkers 1.20 dollars to provide short utterances for seven videos.
Notably, crowdworkers were not given any information about the possible tasks, or names of the
objects in the scene. An image of the interface provided to crowdworkers is included in
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Video 2

» 0:00/0:15

This was a video of a human helping a robot arm perform a task. Provide a *short* instruction that you would want to provide the robot to
complete this task independently in the box below.

Figure 11: Interface shown to crowdworkers for collecting language utterances.

Filtering Crowdsourced Language Annotations. As described in the main paper, one issue with
crowdsourcing language utterances from Amazon Mechanical Turk is the presence of “spam”, noise,
or extremely out-of-domain annotations. We accept and pay all crowdworkers for their responses,
but adopt the following filtering algorithm before training on the collected utterances:

We set the threshold K to use utterances from 15 different crowdworkers for each of the 5 tasks.
Example utterances from crowdworkers who we filtered out include “move your arm outwards
towards the left about 10 inches, lower your arm until you can’t anymore then close your claw.” and
“the human the robot to take bowl”, highlighting the challenges of eliciting high quality language
utterances from demonstrations, and the necessity of such filtering methods.

All 15 utterances for each of the 5 tasks are listed in the file ‘full-annotations.txt’ (un-
der attachments/ in the code repository), constituting the entirety of our training data. The file
‘filtered. txt’ contains the utterances that were filtered out by our procedure.

User Study Instructions. As described in the main paper, we conducted a user study with 10

participants. The attached PDF file ‘user-study.pdf’ shows the example instructions provided to
each participant in our study.
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