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ABSTRACT

Grey-box fuzzers such as American Fuzzy Lop (AFL) are popular
tools for finding bugs and potential vulnerabilities in programs.
While these fuzzers have been able to find vulnerabilities in many
widely used programs, they are not efficient; of the millions of
inputs executed by AFL in a typical fuzzing run, only a handful
discover unseen behavior or trigger a crash. The remaining inputs
are redundant, exhibiting behavior that has already been observed.
Here, we present an approach to increase the efficiency of fuzzers
like AFL by applying machine learning to directly model how pro-
grams behave. We learn a forward prediction model that maps
program inputs to execution traces, training on the thousands of
inputs collected during standard fuzzing. This learned model guides
exploration by focusing on fuzzing inputs on which our model is
the most uncertain (measured via the entropy of the predicted ex-
ecution trace distribution). By focusing on executing inputs our
learned model is unsure about, and ignoring any input whose be-
havior our model is certain about, we show that we can significantly
limit wasteful execution. Through testing our approach on a set of
binaries released as part of the DARPA Cyber Grand Challenge, we
show that our approach is able to find a set of inputs that result in
more code coverage and discovered crashes than baseline fuzzers
with significantly fewer executions.
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1 INTRODUCTION

The goal of fuzz-testing, or fuzzing, is to discover a set of test inputs
that maximize code coverage in a given program, with the hope
that doing so allows one to find bugs, crashes, or other potential
vulnerabilities. While there are many tools for fuzzing, grey-box
mutational fuzzers such as American Fuzzy Lop (AFL) are among
the most successful. These fuzzers work by maintaining a queue of
interesting program inputs, or “parents”, that cover different parts of
the program, and mutating them iteratively, with a set of stochastic
mutation functions (e.g. flip bits, delete bits, insert random bits, etc.)
to generate new “children” inputs. These children are then fed to a
version of the program that has been lightly instrumented to trace
the execution for a given input. If the input takes a path through
the program that has not been observed before, it is added to the
queue. Otherwise, it is discarded. Unfortunately, discarding inputs
comes at a cost; each execution takes time, ranging from a couple of
nanoseconds, to longer than a second, depending on the program.
Within a typical fuzzing run, on the order of billions of inputs are
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generated, with only a handful actually covering unseen code paths,
leading to hundreds of minutes of unnecessary execution time. In
this work, we propose a method to cut down on these redundant
executions by using machine learning to model program behavior.

Specifically, we posit that to fuzz successfully, it is important to
be able to correlate program inputs with the resulting execution
paths. By using machine learning to predict the execution path from
a given input, we introduce an approach that is complementary
to grey-box fuzzing, allowing us to filter useless inputs prior to
execution. The intuition behind our filtering approach is simple:
we focus on executing the generated inputs on which our learned
reasoning model expresses low confidence (if we cannot reason
about what the input will do, chances are it is likely to do something
different than what we have seen before). By focusing on modeling
program behavior we show that we can significantly improve
program coverage with a smaller number of program executions.

We build our approach on top of AFL, one of the preeminent
grey-box fuzzers. We show through a series of experiments on the
DARPA Cyber Grand Challenge binaries that our approach offers
significant improvements to fuzzing efficiency, obtaining a higher
rate of code coverage than many strong baselines, including the
best performing version of AFL.

2 RELATED WORK

While there are many classes of approaches for finding bugs in
programs, we focus on two key types: white-box approaches [7],
including symbolic execution [1, 4, 6, 9, 14-16, 19], and grey-box ap-
proaches [3, 12, 13, 17, 18, 22]. These names come from the amount
of transparency into the underlying program required; white-box
approaches require a great deal of transparency (often access to the
program source, or the ability to lift a binary up to an intermediate
representation), while grey-box approaches require very little (of-
ten it’s just enough to instrument the program at runtime, to collect
small pieces of information, such as whenever the code enters a new
basic block). There also exist black-box approaches [8, 10, 11, 20]
that randomly generate inputs very quickly, and execute programs
to discover crashes. While useful for finding shallow bugs, they
often fail to penetrate deeply into programs.

The core of white-box approaches is the ability to leverage full
transparency into the program under test, in order to explicitly
reason about the nature of control flow. Symbolic execution tools
like KLEE [4] and SAGE [9] lift programs up to an intermediate
representation, where the entirety of the control flow graph is ex-
posed. These approaches then treat inputs as variables, and branch
conditions as constraints on these variables. To find an input that
will pass a certain branch (e.g. enter the if condition of an if/else
statement), a SAT, or constraint solver is used. By explicitly solving
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Figure 1: Full system pipeline. We use AFL to generate a number of test inputs, then rank these test inputs with our prediction
model and entropy scorer. We then execute the inputs with the highest scores, and discard the rest.

for inputs that satisfy constraints, one can theoretically find an
input that will reach any statement in a program. That being said,
the downside of such approaches is in their speed, and need for
resources. Average programs can have hundreds to thousands of
non-trivial branch conditions, and as such, it can take extended
periods of time to solve the corresponding equations. This is exac-
erbated by several factors, including the size of the inputs, reliance
on external libraries in the code, and the ease of which one can
instrument a given program.

On the flipside, grey-box approaches assume minimal trans-
parency into a program. Rather than reason about the entire control
flow graph, for many grey-box approaches, it is enough to instru-
ment the program at run time, solely for the purpose of tracking
when an input hits a new (previously unseen) basic block, or a new
edge between basic blocks. Approaches like American Fuzzy Lop
[22], and it’s many variants [2, 3, 12, 18] track this information to
guide a simple genetic algorithm that generates a series of inputs
and executes them through the program.

The key here is speed; generating new inputs to test is near
instantaneous, and the only real limiting factor is the speed of exe-
cution through the program. In many cases this speed of execution
is not negligible - and furthermore, as many of the generated inputs
are either redundant, or trivially malformed, AFL and related ap-
proaches are wasteful, spending thousands of cycles on inputs that
add no new meaningful information. The goal of our work is to
introduce a new approach that obtains similar speed and efficiency
to AFL, while using machine learning techniques to obtain some
of the precision and reasoning ability as white-box approaches.
With such an approach, we limit wasted cycles, while retaining the
ability to find bugs efficiently and at scale.

3 APPROACH

Modeling program behavior is key to improving fuzzing efficiency.
While there are many ways to approach this modeling problem, in
this work, we focus on learning forward prediction models: given
an input, predict the corresponding execution path through the
program. If we had a perfect execution model, we could simply skip
inputs that lead to execution paths we have already seen, saving

: // Algorithm for AFL + Program Modeling

: // afl: Instance of AFL for generating/executing inputs

. // iterations: Fixed number of generation iterations

: // num_generate: New inputs to generate each iteration

: // a: Fraction of generated inputs to execute each iteration

: // queue: Queue of inputs that exercise new code paths

: // model: Predicts distribution over execution paths for an input
: // ranker: Given predictions, ranks by entropy values (high - low)
: for i € range(iterations) do

O X NN U R W N e

10: generated «— afl.generate(queue, num_generate)
11: execute := []

12: for g € generated do

13: execute < model.predict(g)

14: end for

15: execute < ranker.rank(execute)

16: for j € range(a- num_generate) do

17: queue, path «— afl.execute(queue, execute[j])
18: model « model.retrain(execute[j], path)

19: end for
20: end for

Algorithm 1 AFL + Program Modeling Fuzzing Algorithm

significant time. Our approach, described below, is based on the
heuristic that the less confident our model is in the execution path
it predicts for a given input, the more likely that input is to lead to
an execution path that we have never seen before.

There is an additional benefit to this method. As we execute
each input, we get additional training data for the prediction model.
Selecting new inputs on the basis of uncertainty is a well-known
active learning technique and so this input selection method also
serves to hasten prediction model improvement and thus the ability
of the system to find good candidates.

At a high level, our approach is to repeatedly perform the fol-
lowing steps:

1) Use AFL to generate some number of possible children inputs,
2) Feed these inputs through our model to predict distributions over
execution paths, 3) Rank these generated inputs by the confidence
in the predictions, 4) Execute some fraction of those ranked inputs



that we are the least confident about, and 5) Use the executed inputs
to retrain our path prediction model. This process is graphically
depicted in Figure 1, and logically depicted in Algorithm 1. In the
remainder of this section, we provide additional details about each
of the steps in the above inner loop: generating candidate inputs,
learning a path prediction model, and using this model to rank and
execute the candidates.

3.1 Generating Candidate Inputs

To select a set of promising inputs to execute through the program,
we first need candidates. We obtain this set of candidates by ap-
plying AFL’s mutation logic. Specifically, given our input queue,
we first sample a parent input, then we apply a set of mutation
operators to obtain our new candidate. We repeat this process K
times to obtain a full batch of promising candidates. Note that this
process is extremely fast, as we do not execute any of the generated
inputs through the program.

3.2 Modeling Programs via Path Prediction

A crucial component of our approach is to understand program
behavior by prediction execution paths from program inputs. When
fuzzing starts, we have no examples on which to train our model, so
we predict a uniform distribution over a single (null) path for each
example, which effectively results in a random ranking over the
batch when ranking based on confidence (as will be discussed in
Section 3.3). However, after executing the first batch of inputs, from
the first iteration of Algorithm 1, we have an initial set of labeled
examples {x, p}, where x corresponds to a featurized representation
of the input (e.g. a bag of words representation of an input string),
and p represents the corresponding execution path. Note that for
our purposes, the execution path p is represented as a unique label
(i.e. each observed execution path gets its own label), rather than as
a sequence of basic blocks, or edges in the underlying control flow
graph. This is because programs can have hundreds of basic blocks,
while we note that in practice, only a handful of unique execution
paths (sets of traversed basic blocks) are observed.

With these examples {x, p}, and a total number of unique ob-
served execution paths P, we can then train a probabilistic classifier
to predict a distribution over the P paths for a given input x. In our
experiments, we build the probabilistic classifier using multinomial
logistic regression (via the one-vs-all reduction to P separate bi-
nary logistic regression models, for efficiency). We featurize our
inputs using bigram counts over the bytes of each input string —
that is, we compute a histogram of how many times each unique
bigram sequence appears in the input, and use that histogram as
our representation. We choose not to utilize an L1 or L2 penalty,
and train all models to convergence.

3.3 Estimating Uncertainty via Entropy

The final piece of our approach is using our model to make decisions
about which candidates to actually execute through the program.
To do this, we apply our hypothesis that inputs with uncertain
predictions are more likely to exhibit execution paths that have not
been observed, while inputs with confident predictions are more
likely to be redundant.

As a measure of uncertainty, we use the entropy of the predicted
distribution over execution paths, with high entropy referring to
high uncertainty, and low entropy referring to low uncertainty.
Given an input x, let Pr(p; | x) be the probability that x exhibits
execution path p;. Given this distribution, we compute the entropy
as:

P
H(x) = )" Pr(pi | x)log(Pr(pi | x))
i=1

With this formula, we then score each generated input in the
batch, for the given iteration. Then we rank them by their entropy
(highest - lowest). Finally, we select a fraction a of the highest
entropy inputs to execute. A full breakdown of the process can be
found in Algorithm 1.

4 DATASET

We run preliminary experiments on a subset of the DARPA Cyber
Grand Challenge Binaries. This dataset consists of 200 separate
programs released as part of a 2016 challenge to create tools for
finding, verifying, and patching bugs. Many new tools building off
of AFL and symbolic execution based approaches came out of this
contest [5, 18], and this dataset has been used to benchmark similar
tools ever since. Each program provides unique functionality, and
was written by humans (affiliated with various DARPA programs).
More importantly, each program was written with one or more
human-written bugs, meant to mimic errors that developers might
make when writing actual programs. Furthermore, the programs
in this dataset range in complexity.

In our work, we utilize a subset of 24 randomly chosen programs
from this dataset (due to time constraints, we could not run on the
full 200). We utilized a version of DARPA CGC binaries compiled for
x86 Linux (as opposed to the original DARPA-specific VM), released
via this link: https://github.com/trailofbits/cb-multios.

5 EXPERIMENTAL SETUP

We implement our program modeling approach using logistic re-
gression as our prediction model, and featurize our input strings
by collecting a bag of byte bigrams (a histogram of the number of
times each unique pair of bytes appear in the input). We compare
our program modeling approach with three strong baselines. The
first baseline is that of AFL itself, as it ships out of the box. However,
rather than use the standard AFL parameters, we run AFL with
the “-d” flag, or “FidgetyAFL” [12, 21], as it performs better than
standard AFL given a short fuzzing time period.

The second baseline we utilize is a batched version of AFL, which
we refer to as Batched FidgetyAFL. The differences between Batched
FidgetyAFL and FidgetyAFL are as follows: FidgetyAFL updates its
state (its queue, and therefore which parent inputs are sampled to
generate the next child) immediately after each input is generated
and executed. The batched versions instead remove this consistent
state update and replace it with a batched update, where multiple
inputs are first generated all together without any state updates,
and then executed (with state updates) all at once. We choose this
baseline as it offers a better comparison to our program modeling
approach. Recall that in our approach, we first generate a batch
of examples (without execution), then rank the inputs among the
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Figure 2: Graph depicting relative coverage over number of
executions for the program Flash File System (in the CGC
binaries). Here, we see that the Program Modeling approach
(ML) outperforms all the baselines by a significant margin.
Furthermore, as we continue execution, the gap between the
ML strategy and the others grows.

batch to pick the fraction a to execute. Like Batched FidgetyAFL,
we do not update the state of AFL’s queue until after we execute
all the ranked inputs.

In addition to FidgetyAFL and Batched FidgetyAFL, we have a
third baseline, Random Batched FidgetyAFL, which explores the
effect the ranking over the generated inputs has relative to fuzzing
performance. Unlike our program modeling approach, which gen-
erates a large number of inputs, then executes the top a-fraction
after ranking the predictions by their entropy, Random Batched
FidgetyAFL randomly picks a fraction « of the batch to execute. In
this way, this baseline lets us examine if our entropy-ranking ap-
proach is actually working. Note that Random Batched FidgetyAFL
is markedly different from the Batched FidgetyAFL baseline — this
is because AFL does not uniformly sample inputs from its queue
— instead, it uses a heuristic schedule to sample queue inputs, first
sampling elements from the queue that are more recent, then later
(after generating many new inputs) starts sampling other elements
from the queue. In this way, Random Batched FidgetyAFL exhibits
slightly more random behavior than Batched FidgetyAFL, as it
reflects a wide variety of different sampled parents.

We run our experiments on 24 of the DARPA CGC binaries, for
a total of 50,000 executions per binary. To jumpstart learning, and
to eliminate most of the variance across fuzzing runs, we start all
runs by letting FidgetyAFL run for a 3 minute period. We pre-train
our logistic regression model on the inputs executed during this
window. We then use the resulting AFL state, and the queue of

inputs created as our initial queue, and start each of the 4 different
strategies on top (FidgetyAFL, Batched FidgetyAFL, Random, and
Logistic Regression). For all experiments, we utilize AFL version
2.52b.

To measure the relative performance across all strategies, we
use a metric we refer to as relative coverage. Let s correspond to a
given strategy, ¢ the given execution iteration, T the max number
of execution iterations, and code-paths,(s) the number of unique
code-paths that strategy s has discovered by execution iteration ¢.
Then Relative Coverage rel-cov for a single program is defined as:

de-path
rel-cov(s) = code-paths, (5)

max [code-pathsy(s”)]

or the ratio between the number of code paths strategy s has found,
and the maximum number of code paths across all strategies by
the final execution iteration T. We report the mean and standard
error of across all 24 programs. Furthermore, to get a better sense
of how the different strategies behave over time, we report relative
coverage statistics at every 10,000 executions.

6 RESULTS AND DISCUSSION

Table 1 reports relative coverage statistics for each of the four
strategies at each interval of 10,000 executions. Furthermore, Figure
2 provides a graph reporting number of code paths discovered vs.
executions for program Flash File System (an example program
from the CGC binaries). Finally, Figure 3 contains a summary graph
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Figure 3: Summary Graph depicting relative coverage over
number of executions for the 24 CGC binaries, at a 95% con-
fidence interval. Again, we see the Program Modeling ap-
proach (ML) outperform the other approaches by a larger
and larger margin as execution continues.



FidgetyAFL Batched FidgetyAFL Random Batched FidgetyAFL Logistic Regression with Bigram Features

Executions

10000 .623 £+ .011 .624 + .011
20000 .647 £ .011 644 + 011
30000 .671 +.011 .660 + .011
40000 .692 +.010 .671 +.010
50000 .706 £ .010 .680 +.010

.632 = .011 .638 = .011
.667 +.011 .688 = .011
.699 + .011 .755 = .009
716 = .011 .791 = .009
.755 +.009 .816 = .009

Table 1: Aggregate statistics over 24 programs. FidgetyAFL is the out-of-the-box release of FidgetyAFL (standard AFL run
in “havoc” mode), Batched FidgetyAFL operates on batches of inputs, choosing the first « fraction to execute, and Random
Batched FidgetyAFL also operates on batches, but randomly chooses which « fraction to execute. Logistic Regression with
Bigram Features implements the procedure in Algorithm 1, and uses a learned model of program behavior to rank inputs to

execute.

aggregating relative coverage over all 24 binaries in our test set, at
a 95% confidence interval across binaries.

From these results, there are two key conclusions to pick out.
The first is to realize that at all time steps, the program modeling
approach is a clear winner, obtaining higher coverage than any of
the baseline strategies. This seems to indicate that the gains from
Logistic Regression ranking are significantly higher than the losses
suffered from the batched update procedure. As such, a possible
avenue for future work would be to augment the Entropy Ranking
based Logistic Regression with a thresholding operation, to allow
the model to make choices about whether to execute an input or
not, in an online fashion. Doing so would remove any need for
batching, and allow the approach to incur the same benefits as
traditional AFL, with its continuous state updates.

The second key observation is that the performance gap between
the program modeling approach and the other baseline approaches
grows as the number of executions rises. This is best exhibited
by the graphs in Figures 2 and 3. We see that at the beginning of
fuzzing, there is just a small, almost negligible gap in performance,
while as execution continues, the gap grows larger and larger. There
are two possible conclusions to be drawn from this: the first is a
rather simple one, that as the program modeling approach identifies
more code paths, AFL’s queue is updated, and we begin sampling
more of the recently discovered inputs — reasons for why AFL
itself is successful. However, another possible explanation is that of
how the program model behaves as more data becomes available.
With more executions, the logistic regression is given more labeled
examples. As such, it gets better at identifying patterns in the inputs,
and the confidence scores assigned at inference time become more
meaningful. Another avenue of future work is to examine the nature
of the learned models, and how they change as execution continues.
It may also be worthwhile to throw stronger learning algorithms
and more program-specific features into the mix, seeing if there is
a way to strengthen the reported confidence scores.

7 CONCLUSION

In this work, we presented a system for improving the efficiency
and precision of AFL, the premier grey-box fuzzer, utilizing tech-
niques from machine learning to directly model program behavior.
Specifically, we note that a major weakness of AFL and similar
approaches is the number of program executions that are wasted
on redundant or non-informative inputs. To remedy this problem,

we proposed a two-phase approach that 1) learns a forward predic-
tion model that maps inputs to execution paths, and 2) uses that
model to identify inputs that are potentially interesting. The intu-
ition we use is that if we can confidently model how a given input
will behave when executed, then it is not worth executing. Instead,
we should focus on the inputs for which our model exhibits low
confidence — these are inputs that when executed, will potentially
trigger new areas of code that have not yet been observed. Our
results show that our ranking-based approach built with a simple
logistic regression classifier obtains extremely strong performance,
beating 3 strong baselines, including the standard, out-of-the-box
implementation of AFL itself. Furthermore, our results show that as
we continue fuzzing, our approach gets better and better, with the
performance gap between our approach and baselines widening
over time. These results indicate that there are strong benefits to be
found in applying techniques from machine learning and pattern
recognition to fuzzing, and that this is a very fruitful avenue of
research.
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