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Abstract—Humans can ground natural language commands
to tasks at both abstract and fine-grained levels of specificity.
For instance, a human forklift operator can be instructed to
perform a high-level action, like “grab a pallet” or a low-
level action like “tilt back a little bit.” While robots are also
capable of grounding language commands to tasks, previous
methods implicitly assume that all commands and tasks reside at
a single, fixed level of abstraction. Additionally, those approaches
that do not use abstraction experience inefficient planning and
execution times due to the large, intractable state-action spaces,
which closely resemble real world complexity. In this work, by
grounding commands to all the tasks or subtasks available in a
hierarchical planning framework, we arrive at a model capable
of interpreting language at multiple levels of specificity ranging
from coarse to more granular. We show that the accuracy of the
grounding procedure is improved when simultaneously inferring
the degree of abstraction in language used to communicate the
task. Leveraging hierarchy also improves efficiency: our proposed
approach enables a robot to respond to a command within
one second on 90% of our tasks, while baselines take over
twenty seconds on half the tasks. Finally, we demonstrate that
a real, physical robot can ground commands at multiple levels
of abstraction allowing it to efficiently plan different subtasks
within the same planning hierarchy.

I. INTRODUCTION

In everyday speech, humans use language at multiple levels
of abstraction. For example, a brief transcript from an ex-
pert human forklift operator instructing a human trainee has
very abstract commands such as “Grab a pallet,” mid-level
commands such as “Make sure your forks are centered,” and
very fine-grained commands such as “Tilt back a little bit”
all within thirty seconds of dialog. Humans use these varied
granularities to specify and reason about a large variety of
tasks with a wide range of difficulties. Furthermore, these
abstractions in language map to subgoals that are useful when
interpreting and executing a task. In the case of the forklift
trainee above, the sub-goals of moving to the pallet, placing
the forklift under the object, then lifting it up are all implicitly
encoded in the command “Grab a pallet.” By decomposing
generic, abstract commands into modular sub-goals, humans
exert more organization, efficiency, and control in their plan-
ning and execution of tasks. A robotic system that can identify
and leverage the degree of specificity used to communicate
instructions would be more accurate in its task grounding and
more robust towards varied human communication.

Existing approaches map between natural language com-
mands and a formal representation at some fixed level of

Fig. 1: Examples of high-level and fine-grained commands
issued to the Turtlebot robot in a mobile-manipulation task.

abstraction [6, 19, 30]. While effective at directing robots
to complete predefined tasks, mapping to fixed sequences of
robot actions is unreliable when faced with a changing or
stochastic environment. Accordingly, MacGlashan et al. [17]
decouple the problem and use a statistical language model to
map between language and robot goals, expressed as reward
functions in a Markov Decision Process (MDP). Then, an
arbitrary planner solves the MDP, resolving any environment-
specific challenges. As a result, the learned language model
can transfer to other robots with different action sets so
long as there is consistency in the task representation (i.e.,
reward functions). However, MDPs for complex, real-world
environments face an inherent tradeoff between including low-
level task representations and increasing the time needed to
plan in the presence of both low- and high-level reward
functions [11].

To address these problems, we present an approach for
mapping natural language commands of varying complexities
to reward functions at different levels of abstraction within
a hierarchical planning framework. This approach enables
the system to quickly and accurately interpret both abstract
and fine-grained commands. Our system uses a deep neural
network language model that learns how to map natural
language commands to the appropriate level of the planning
hierarchy. By coupling abstraction level inference with the
overall grounding problem, we fully exploit the subsequent
hierarchical planner to efficiently execute the grounded tasks.
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To our knowledge, we are the first to contribute a system for
grounding language at multiple levels of abstraction, as well
as the first to contribute a deep learning system for improved
robotic language understanding.

Our evaluation shows that the deep neural network language
model can infer reward functions faster and more accurately
than statistical language model baselines. We present results
comparing a traditional statistical language model to three dif-
ferent neural architectures that are commonly used in natural
language processing. Furthermore, we show that a hierarchical
approach allows the planner to map to a larger, richer space
of reward functions more quickly and more accurately than
non-hierarchical baselines. This speedup allows the robot
to respond faster and more accurately to a user’s request,
with a much larger set of potential commands than previous
approaches. We also demonstrate on a Turtlebot the rapid and
accurate response of our system to natural language commands
at varying levels of abstraction.

II. RELATED WORK

Humans use natural language to communicate ideas, moti-
vations, task descriptions, etc. with other humans. One of the
earliest works in this area mapped tasks to another planning
language, which then grounded to the actions performed by
the robots [6]. More recent methods ground natural language
commands to tasks using features that describe correspon-
dences between natural language phrases present in the task
description and physical objects and actions available in the
world [12, 19, 30]. This featurized representation can then
describe the sequence of actions needed to complete the
task. In a similar vein Paul et al. [25] ground to abstract
spatial concepts like rows, columns and middle before learn-
ing correspondences between them to solve tasks. All these
approaches ground commands to action sequences, leading to
brittle behavior if the environment is stochastic.

MacGlashan et al. [17] proposed grounding natural lan-
guage commands to reward functions associated with certain
tasks, allowing robot agents to plan in stochastic environ-
ments. The robot can solve for individual plans once natural
language commands ground to applicable reward functions.
MacGlashan et al. [17] treated the goal reward function as
a sequence of propositional functions, much like a machine
language, to which a natural language task can be translated,
using an IBM Model 2 [4, 5] (IBM2) language model. While
their propositional functions only lie at one level of abstrac-
tion, we want the robot to understand commands at different
levels of specificity while still maintaining efficient planning
and execution in the face of multiple levels of abstraction.

Planning in domains with large state-action spaces is com-
putationally expensive as planners like value iteration and
bounded RTDP need to explore the domain at the lowest,
“flat” level of abstraction [2, 21]. Naively this might result
in an exhaustive search of the space before the goal state
is found. A better approach is to decompose the planning
problem into smaller, more easily solved subtasks. The agent
can then achieve the goal by choosing a sequence of these

subtasks. A common method to describe subtasks is by using
temporal abstraction in the form of Macro-Actions [20] or
Options [29]. These methods achieve subgoals using either a
fixed sequence of actions [20] or a subgoal based policy [29].
Planning with Macro-Actions or Options requires computing
the policies for each Option or Macro-action, which is done by
exploring and backing up rewards from lowest level actions.
This “bottom-up” planning is slow, as the reward for each
action taken needs to be backed up through the hierarchy
of options, which is time consuming. Other methods for
abstraction, like MAXQ [9], R-MAXQ [14] and Abstract
Markov Decision Processes (AMDPs) [11] involve providing a
hierarchy of subtasks. In these methods, a subtask is associated
with a subgoal and a state abstraction relevant to achieving
the subgoal [9, 11, 14]. Both MAXQ [9] and R-MAXQ [14]
are bottom-up planners, they back up each individual action’s
reward across the hierarchy.

We chose AMDPs [11] for our approach because they plan
in a “top-down” fashion. Much like in an MDP, AMDPs
offer model-based hierarchical representations in the form of
reward functions and transition functions to every subtask.
An AMDP hierarchy itself is an acyclic graph in which each
node is a primitive action or an AMDP that solves a subtask
defined by its parent [11]; the states of the subtask AMDP
are abstract representations of the environment state. AMDPs
have been shown to achieve faster planning performance than
other hierarchical methods [11]

To perform the language grounding, we use a deep neural
network language model. Deep neural networks have had great
success in a variety of natural language tasks, like traditional
language modeling [3, 22, 23], machine translation [7, 8], and
text categorization [13]. One of the contributing factors to the
success of such methods is their ability to learn meaningful
input representations during the training process. For example,
Bengio et al. [3] learn distributed representations of words
in tandem with the rest of their language model. Similarly,
Mikolov et al. [24] propose a system solely dedicated to
learning these representations. These “embeddings” are dense
vectors that not only uniquely represent individual words (as
opposed to otherwise sparse approaches for word represen-
tation), but capture semantically significant features of the
language as well. Another contributing factor to the success of
such methods is the use of Recurrent Neural Networks, a type
of neural network cell that maps variable length inputs (i.e.
commands) to a fixed-size vector representation, which have
been widely used in NLP [7, 8]. To the best of our knowledge,
our approach is the first to use both word embeddings and a
state-of-the-art RNN model to map between natural language
and an MDP reward function.

III. TECHNICAL APPROACH

To interpret a variety of natural language commands, there
must be a representation for all possible tasks and subtasks.
We define an Object-oriented Markov Decision Process (OO-
MDP) to represent the robot’s actions [10]. An MDP is a
five-tuple of 〈S,A, T ,R, γ〉 where S represents the set of



states that define an environment, A denotes the set of actions
an agent can execute to transition between states, T defines
the transition probability distribution over all possible next
states given a current state and executed action, R defines
the numerical reward earned for a particular transition, and
γ represents the discount factor or effective time horizon
under consideration. Planning in an MDP produces a mapping
between states and actions, or policy, that maximizes the
total expected discounted reward. In our framework, as in
MacGlashan et al. [17], we will map between words in
language and specific reward functions.

An OO-MDP builds upon an MDP by adding sets of
object classes and propositional functions; each object class is
defined by a set of attributes and each propositional function
is parameterized by instances of object classes. For example,
an OO-MDP for the mobile robot manipulation domain seen
in Fig. 1 might denote the robot’s successful placement of the
orange block into the blue room via the propositional function
blockInRoom block0 room1, where block0 and room1 are
instances of the block and room object classes respectively and
the blockInRoom propositional function checks if the location
attribute of block0 is contained in room1. Using these propo-
sitional functions as reward functions that encode termination
conditions for each task, we arrive at a sufficient, semantic
representation for grounding language. For our evaluation, we
use the Cleanup World [15, 17] OO-MDP, which models a
mobile manipulator robot; this domain is defined in Sec. V-A.

In order to effectively ground commands across multiple
levels of complexity, we assume a predefined hierarchy over
the state-action space of the given grounding environment.
Furthermore, each level of this hierarchy requires its own
set of reward functions for all relevant tasks and sub-tasks.
In our work, fast planning and the ability to ground and
solve individual subtasks without needing to solve the entire
planning problem make AMDPs a reliable choice for the hi-
erarchical planner [11]. Finally, we assume that all commands
are generated from a single, fixed level of abstraction.

Given a natural language command c, we find the corre-
sponding level of the abstraction hierarchy l, and the reward
function m that maximizes the joint probability of l, m given
c. Concretely, we seek the level of the state-action hierarchy
l̂ and the reward function m̂ such that:

l̂, m̂ = argmax
l,m

Pr(l,m | c) (1)

For example, a high-level natural language command like
“Take the block to the blue room” (as shown at the top of
Fig. 1) would map to the highest level of abstraction while a
low-level command like “Go north a little bit” (as shown at
the bottom of Fig. 1) would map to the finest-grained level
of abstraction. We estimate this joint probability by learning
a language model (described in Sec. IV) and training on a
parallel corpus that pairs natural language commands with
a corresponding reward function at a particular level of the
abstraction hierarchy.

Given this parallel corpus, we train each model by directly
maximizing the joint probability from Eqn. 7. Specifically, we

learn a set of parameters θ̂ that maximize the following corpus
likelihood:

θ̂ = argmax
θ

∏
(c,l,m)∈C

Pr(l,m | c, θ) (2)

At inference time, given an language command c, we find the
best l, m that maximize the probability Pr(l,m | c, θ̂). The
reward function m is then passed to a hierarchical planner,
which plans the corresponding task at abstraction level l.

IV. LANGUAGE MODELS

We compare four language models: an IBM Model 2
translation model (similar to MacGlashan et al. [17]), a deep
neural network bag-of-words language model, and two sets
of recurrent neural network language models, with varying
architectures. For detailed descriptions of all the presented
models, please refer to the supplementary material.

A. IBM Model 2

As a baseline, task grounding is recast as a machine
translation problem with a source language defined by natural
language and a target language defined by semantic task
representations (reward functions). We use the well known
IBM Model 2 (IBM2) machine translation model [4, 5] as a
statistical language model for scoring reward functions based
on some input command. IBM2 is a generative model that
solves the following objective, which is equivalent to Eqn. 7
by Bayes’ rule:

l̂, m̂ = argmax
l,m

Pr(l,m) · Pr(c | l,m) (3)

This task grounding formulation follows directly from Mac-
Glashan et al. [17] and we continue in an identical fashion
training the IBM2 using the standard EM algorithm.

B. Neural Network Language Models

We evaluate three classes of neural network architectures
(see Fig. 2): a feed-forward network that takes a natural
language command encoded as a bag-of-words and has sep-
arate parameters for each level of abstraction (Multi-NN), a
recurrent network that takes into account the order of words
in the sequence, also with separate parameters (Multi-RNN),
and a recurrent network that takes into account the order of
words in the sequence and has a shared parameter space across
levels of abstraction (Single-RNN).

1) Multi-NN: Multiple Output Feed-Forward Network:
We propose a feed-forward neural network [3, 13, 24] that
takes in a natural language command as a bag-of-words, and
outputs both the probability of each of the different levels of
abstraction, as well as the probability of each reward function.
Specifically, we decompose the conditional probability from
Eqn. 7 as Pr(l,m | c) = Pr(l | c) · Pr(m | l, c). If we
represent our natural language command c as a bag-of-words



(a) Multi-NN Model (b) Multi-RNN Model (c) Single-RNN Model

Fig. 2: Model architectures for all three sets of deep neural network models. In blue are the network inputs, and in red are the
network outputs. Going left to right, the green denotes significant structural differences between models.

vector ~c, the Multi-NN objective is to find a set of parameters
θ̂ such that:

θ̂ = argmax
θ

∑
(~c,l,m)

logPr(l | ~c, θ) + logPr(m | l,~c, θ) (4)

This follows by taking a logarithm of the corpus objective
outlined in Eqn. 2.

To learn this set of parameters, we use the architecture
shown in Fig. 2a. Namely, we employ a multi-output deep
neural network with an initial embedding layer, a hidden layer
that is shared between each of the different outputs, and then
output-specific hidden and read-out layers, respectively.

The level selection output is a k-element discrete distri-
bution, where k is the number of levels of abstraction in the
given planning hierarchy. Similarly, the reward function output
at each level Li is an ri-element distribution, where ri is the
number of reward functions at the given level of the hierarchy.

To train the model, we minimize the sum of the cross-
entropy loss on each term in Eqn. 4. We train the network via
backpropagation, using the Adam Optimizer [16], with a mini-
batch size of 16, and a learning rate of 0.001. Furthermore, to
better regularize the model and encourage robustness, we use
Dropout [27] after the initial embedding layer, as well as after
the output-specific hidden layers with probability p = 0.5.

2) Multi-RNN: Multiple Output Recurrent Network:
Inspired by the success of recurrent neural networks in NLP
tasks [7, 22, 23, 28], we propose a recurrent neural network
language model that takes in a command as a sequence of
words and, like the Multi-NN bag-of-words model, outputs
both the probability of each of the different levels of abstrac-
tion, as well as the probability of each reward function, at
each of the different levels of abstraction. Recurrent Neural
Networks are extensions of feed-forward networks that can
handle variable length inputs. They do this by employing a
set of one or more hidden states which update after reading
in each input token. Similar to the Multi-NN, we decompose
the conditional probability from the objective in Eqn. 7. If we
represent the natural language command c as a sequence of
words s = 〈c1, c2 . . . cn〉, the Multi-RNN objective is to find

a set of parameters such that:

θ̂ = argmax
θ

∑
(c,l,m)

logPr(l | s, θ) + logPr(m | l, s, θ) (5)

To do this, we use the architecture depicted in Fig. 2b; sim-
ilar to the Multi-NN architecture, we instead use a Recurrent
Neural Network encoder that takes the sequence of raw input
tokens (in lieu of a bag-of-words representation), and maps
them into a fixed-size state vector.

In this work, we leverage the the Gated Recurrent Unit
(GRU) of Cho et al. [7], a particular type of Recurrent Neural
Network cell that is characterized by a hidden state incre-
mentally updated with new inputs (i.e. words in a command).
We utilize them specifically as they have been shown to work
well on natural language sequence modeling tasks [8]. Similar
to the Multi-NN, we train the model by minimizing the sum
of the cross-entropy loss of each of the two terms described
in objective Eqn. 5, with the same optimizer setup as the
Multi-NN model. Once again, dropout is used to regularize
the network, after the initial embedding layer, as well as after
the output-specific hidden layers.

3) Single-RNN: Single Output Recurrent Network: Both
the Multi-NN and the Multi-RNN approaches detailed above
decompose the conditional probability of both the level of
abstraction l and the reward function m given the natural
language command c as Pr(l,m | c) = Pr(l | c)·Pr(m | l, c),
allowing for the explicit calculation of the probability of each
level of abstraction given the natural language command.
Furthermore, as a result of this decomposition, both the Multi-
NN and Multi-RNN create separate sets of parameters for each
of the separate outputs - namely, this translates to separate
sets of parameters for each of the levels of abstractions in the
underlying hierarchical planner.

Alternatively, it is possible to use a model to directly
estimate the joint probability Pr(l,m | c). To do this, we
propose a different type of recurrent neural network model
that takes in a natural language command as a sequence of
words, and directly outputs the joint probability of each tuple
(l,m), where l denotes the level of abstraction, and m denotes



(a) A starting instance of the
Cleanup World domain.

Level Example Command Reward Function

L0
Turn and move one spot to the right.
Go three down, four over, two up.

goWest
agentInRoom agent0 room1

L1

Go to door, enter red room, push
chair to green room door.

Go to the door then go into the red room.

blockInRegion block0 room1

agentInRegion agent0 room0

L2
Go to the green room.
Bring the chair to the blue room.

agentInRegion agent0 room1
blockInRegion block0 room2

(b) Example commands and corresponding reward functions.

Fig. 3: Amazon Mechanical Turk (AMT) dataset statistics and examples.

the reward function at the given level. Specifically, if we
represent the natural language command c as a sequence of
words s = 〈c1, c2 . . . cn〉, then the Single-RNN objective is to
find a set of parameters θ̂ such that:

θ̂ = argmax
θ

∑
(n,l,m)

logPr(l,m | s, θ) (6)

With this Single-RNN model, we are able to significantly
improve model efficiency compared to the Multi-RNN model,
as all levels of abstraction share a single set of parameters.
Furthermore, removing the explicit calculation of the level
selection probabilities allows for the possibility of positive
information transfer between levels of abstraction, which is
not necessarily possible with the previous models.

With this in mind, we use the architecture depicted in
Fig. 2c. Namely, we employ a single-output recurrent neural
network, similar to the Multi-RNN architecture, with the key
difference that there is only a single output, with each element
of the final output vector corresponding to the probability of
each tuple of levels of abstraction and reward functions given
the natural language command.

To train the Single-RNN model, we directly minimize the
cross-entropy loss of the joint probability term described in
objective Eqn. 6. Training hyperparameters are identical to
the Multi-RNN model and dropout is applied to the initial
embedding layer as well as the penultimate hidden layer.

V. EVALUATION

The aim of our evaluation is to test the hypothesis that
hierarchical structure improves the speed and accuracy of lan-
guage grounding at multiple levels of abstraction. We evaluate
our method with a corpus-based evaluation in simulation and
assess the speed and accuracy of our approach. Additionally
we demonstrate our system on a Turtlebot mobile robot.

A. Mobile Robot Domain

The Cleanup World is a mobile-manipulator robot domain
that is partitioned into rooms (denoted by unique colors)
with open doors. Additionally, each room may contain some
number of objects which can be moved (pushed) by the robot.
This problem is modeled after a mobile robot that must move
objects around an environment, analogous to a robotic forklift

operating in a warehouse or a pick-and-place robot in a home
environment. We use an AMDP taken directly from Gopalan
et al. [11] for the Cleanup World domain which imposes
a three-level abstraction hierarchy that can be utilized for
planning.

The combinatorially large state space of the Cleanup World
simulates real world complexity and is ideal for exploiting
abstractions. At the lowest level of abstraction (which we refer
to as L0), the (primitive) action set available to the robot agent
consists of north, south, east, and west actions. Accordingly, a
user directing the robot at this level of granularity must specify
lengthy commands representing step by step instructions for
the robot to execute. At the next level of abstraction (referred
to as L1), the topology of the Cleanup World is drastically
reduced to only consist of rooms and doors. The robot’s
presence in the domain is solely defined by the region (i.e.
room or door) it resides in; the abstracted actions here denote
subroutines for moving either the robot or a specific block to
a room or door. It is impossible to transition between rooms
without first transitioning through a door and it is only possible
to transition between adjacent regions (i.e. it would not be
possible to directly move from the green room to the blue
room in Fig. 3a without first passing through the red room);
any language guiding the robot at this level must adhere to
these dynamics. Finally, the last level of abstraction (referred
to as L2) mimics the previous but removes the concept of doors
leaving only whole rooms as regions; all transition dynamics
still hold including adjacency as deciding whether or not the
robot may move to another room from it’s current room. Here,
subroutines exist for moving either the robot or an available
object between connected rooms. The full space of subroutines
at all levels and their corresponding propositional functions
are defined by [11] however Fig. 3b provides a few collected
sample commands at each level and the corresponding level-
specific subroutine within the AMDP.

B. Procedure

Given the AMDP for the Cleanup World domain we con-
ducted an Amazon Mechanical Turk (AMT) user study to
collect natural language samples at various levels of abstrac-
tion for the Cleanup World domain [15, 17] (see Fig. 3a).
Annotators were shown video demonstrations of ten tasks



Evaluated L0 Evaluated L1 Evaluated L2

Trained L0 21.61% 17.20% 21.87%
Trained L1 9.83% 10.23% 13.90%
Trained L2 14.94% 12.84% 31.49%

(a) IBM2 Reward Grounding Baselines

Evaluated L0 Evaluated L1 Evaluated L2

Trained L0 77.67% 28.05% 23.26%
Trained L1 32.79% 82.99% 74.65%
Trained L2 14.19% 58.62% 87.91%

(b) Single-RNN Reward Grounding Baselines

Fig. 4: Task grounding accuracy (averaged over 5 trials) when training IBM2 and Single-RNN models on a single level of
abstraction, then evaluating commands from alternate levels. This is similar to the MacGlashan et al. [17] results, as we see
that without accounting for abstractions in language, there is a noticeable effect on grounding accuracy.

Level Selection Reward Grounding

IBM2 79.87% 27.26%
Multi-NN 93.51% 36.05%
Multi-RNN 95.71% 80.11%
Single-RNN 95.91% 80.46%

Fig. 5: Accuracy of 10-Fold Cross Validation (averaged over
3 runs) for each of the models on the AMT Dataset.

using a single starting instance of the Cleanup World domain
shown in Fig. 3a. For each task, we asked them to type
a command that they would to ask a robot to perform the
action they saw in the video while constraining their language
to adhere to one of three possible levels in a designated
abstraction hierarchy: fine-grained, medium, and coarse. This
data was used to construct multiple parallel corpora for the
machine translation problem of task grounding. We measured
our system’s performance by passing each command to the
language grounding system and assessing whether it inferred
both the correct level of abstraction and the reward function.
We also recorded the response time of the system, measuring
from when the command was issued to the language model
to when the (simulated) robot would have started moving.
Accuracy values were computed using the mean of multiple
trials of ten-fold cross validation. The space of possible tasks
included moving a single step as well as navigating to a
particular room, taking a particular object to a designated
room, and all combinations thereof.

Unlike MacGlashan et al. [17], the demonstrations shown
were not only limited to simple robot navigation and object
placement tasks but also included composite tasks (e.g. “Go
to the red room, take the red chair to the green room, go
back to the red room, and return to the blue room”). In
order to not limit the potential variation in the provided
language commands, only those commands which reflected
a clear misunderstanding of the presented task were removed
from the dataset. At the end of data collection, we removed
fewer than 30 commands for this reason giving us a total
of 3047 commands; an example removed command was the
vague fragment, “please robot” as it is not clear from this
example what the robot should be doing. Per level, this gave
us 1309 commands at L0, 872 commands at L1, and 866
commands at L2. The L0 corpus included more commands

since the tasks of moving the robot one unit in each of the
four cardinal directions do not translate to or exist at higher
levels of abstraction.

C. Robot Task Grounding

In order to demonstrate the importance of inferring the
latent abstraction level in language, we present the baseline
task grounding accuracies in Fig. 4. We simulate the effect of
an oracle that partitions all of the collected AMT commands
into separate corpora according to the specificity of each
command. For this experiment, any L0 commands that did
not exist at all levels of the CleanupWorld hierarchy were
omitted from the dataset, resulting in a condensed L0 dataset
of 869 commands. We trained multiple IBM2 and Single-
RNN models using data from one distinct level and then
evaluated using data from a separate level. Training a model
at a particular level of abstraction includes grounding solely
to the reward functions that exist at that same level. Reward
functions at the evaluation level were mapped to the equivalent
reward functions at the training level (e.g. L1 agentInRegion
to L0 agentInRoom). Entries along the diagonal represent
the average task grounding accuracy for multiple, random 90-
10 splits of the data at the given level. Otherwise, evaluation
checked for the correct grounding of the command to a reward
function at the training level equivalent to the true reward
function at the alternate evaluation level.

Task grounding scores are uniformly quite poor for IBM2;
however, IBM2 models trained using L0 and L2 data re-
spectively result in models that substantially outperform those
trained on alternate levels of data. It is also apparent that an
IBM2 model trained on L1 data fails to identify the features
of the level. We speculate that this is caused, in part, by high
variance among the language commands collected at L1 as
well as the large number of overlapping, repetitive tokens that
are needed for generating a valid machine language instance
at L1. While these models are worse than what MacGlashan
et al. [17] observed, we note that we do not utilize a task or
behavior model. It follows that integrating one or both of these
components would only help prune the task grounding space
of highly improbable tasks and improve our performance.

Conversely, the Single-RNN model shows the expected
maximization along diagonal entries that comes from training
and evaluating on data at the same level of abstraction.
These show show that a model limited to a single level of



language abstraction is not flexible enough to deal with the
full scope of possible commands. Additionally, the Single-
RNN model demonstrates more robust task grounding than
statistical machine translation.

The task grounding and level inference scores for the
models in Sec. IV are shown in Fig. 5. Attempting to embed
the latent abstraction level within the machine language of
IBM2 results in weak level inference. Furthermore, grounding
accuracy falls even further due to sparse alignments and the
sharing of tokens between tasks in machine language (e.g.
agentInRoom agent0 room1 at L0 and agentInRegion
agent0 room1 at L1). The fastest of all the neural models, and
the one with the fewest number of parameters overall, Multi-
NN shows notable improvement in level inference over the
IBM2; however, task grounding performance still suffers, as
the bag-of-words representation fails to capture the sequential
word dependencies critical to the intent of each command.
The Multi-RNN model again improves upon level prediction
accuracy and leverages the high dimensional representation
learned by initial RNN layer to train reliable grounding models
specific to each level of abstraction. Finally, the Single-RNN
model has near-perfect level prediction and demonstrates the
successful learning of abstraction level as a latent feature
within the neural model. By not using an oracle for level
inference, there is a slight loss in performance compared to
the results obtained in Fig. 4b; however, we still see improved
grounding performance over Multi-RNN that can be attributed
to the full sharing of parameters across all training samples
allowing for positive information transfer between abstraction
levels.

D. Robot Response Time

Fast response times are important for fluid human-robot
interaction, so we assessed the time it would take a robot
to respond to natural language commands in our corpus. To
assess response time, we measured the time it takes for the
system to process a natural language command, map it to a
reward function, and then solve the resulting MDP to yield
a policy so that the simulated robot would start moving. We
used Single-RNN for inference since it was the most accurate
grounding model, and only correctly grounded instances were
evaluated, so our results are for 2634 of 3047 commands that
Single-RNN got correct.

We compared three different planners to solve the MDP:
• BASE: A state-of-the-art flat (non-hierarchical) planner,

bounded real-time dynamic programming (BRTDP [21]).
• AMDP: A hierarchical planner for MDPs [11]. At the

primitive level of the hierarchy (L0), AMDP also requires
a flat planner; we use BASE to allow for comparable
planning times. Because the subtasks have no compo-
sitional structure, a Manhattan-distance heuristic can be
used at L0. While BASE technically allows for heuristics,
distance-based heuristics are unsuitable for the composite
tasks in our dataset. This illustrates another benefit of
using hierarchies: to decompose composite tasks into
subtasks that are amenable to better heuristics.
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Fig. 6: Relative inference + planning times for different
planning approaches on the same correctly grounded AMT
commands. For each method pair, values less than 1 indicate
the method on the numerator (left of ‘/’) is better. Each data
point is an average of 1000 planning trials.

• NH (No Heuristic): Identical to AMDP, but without the
heuristic as a fair comparison against BASE.

We hypothesize NH is faster than BASE (due to use of
hierarchy), but not as fast as AMDP (due to lack of heuristics).

Since the actual planning times depend heavily on the
actual task being grounded (ranging from 5ms for goNorth
to 180s for some high-level commands), we instead evaluate
the relative times used between different planning approaches.
Fig. 6a shows the results for all 3 pairs of planners. For
example, the left-most column shows AMDP time

BASE time ; the fact that
most results were less than 1 indicates that AMDP usually
outperforms BASE. Using Wilcoxon signed-rank tests, we find
that each approach in the numerator is significantly faster
(p < 10−40) than the one in the denominator, i.e., AMDP
is faster than NH, which is in turn faster than BASE; this is
consistent with our hypothesis. Comparing AMDP to BASE,
we find that AMDP is twice as fast in over half the cases,
4 times as fast in a quarter of the cases, and can reach 20
times speedup. However, AMDP is also slower than BASE
on 23% of the cases; of these, half are within 5% of BASE,
but the other half is up to 3 times slower. Inspecting these
cases suggests that the slowdown is due to overhead from
instantiating multiple planning tasks in the hierarchy; this
overhead is especially prominent in relatively small domains
like Cleanup World. Note that in the worst case this is less
than a 2s absolute time difference.

From a computational standpoint, the primary advantage of
hierarchy is space/time abstraction. To illustrate the potential
benefit of using hierarchical planners in larger domains, we
doubled the size of the original Cleanup domain and ran the
same experiments. Ideally, this should have no effect on L1

and L2 tasks, since these tasks are agnostic to the discretization
of the world. The results are shown in Fig. 6b, which again
are consistent with our hypothesis. Somewhat surprisingly
though, while NH still outperforms BASE (p < 10−150), it
was much less efficient than AMDP, which shows that the



hierarchy itself was insufficient; the heuristic also plays an
important role. Additionally, NH suffered from two outliers,
where the planning problem became more complex because
the solution was constrained to conform to the hierarchy;
this is a well-known tradeoff in hierarchical planning [9].
The use of heuristics in AMDP mitigated this issue. AMDP
times almost stayed the same compared to the regular domain,
hence outperforming BASE and NH (p < 10−200). The larger
domain size also reduced the effect of hierarchical planning
overhead: AMDP was only slower than BASE in 10% of
the cases, all within < 4% of the time it took for BASE.
Comparing AMDP to BASE, we find that AMDP is 8 times
as fast in over half the cases, 100 times as fast in a quarter
of the cases, and can reach up to 3 orders of magnitude in
speedup. In absolute time, AMDP took < 1s on 90% of the
tasks; in contrast, BASE takes > 20s on half the tasks.

E. Robot Demonstration

Using the trained grounding model and the corresponding
AMDP hierarchy, we tested on a Turtlebot within a small
scale version of the Cleanup World domain. In order to
accommodate the continuous action space of the Turtlebot, the
low-level, primitive actions at L0 of the AMDP were swapped
out for move forward, backward, and bidirectional rotation
actions; all other levels of the AMDP remained unchanged.
These commands were implemented using low level, closed
loop control policies, which were sent to the robot using the
Robot Operating System [26].

Spoken commands were provided by an expert human user
instructing the robot to navigate from one room to another.
These verbal commands were converted from speech to text
using Google’s Speech API [1] before being grounded with the
trained Single-RNN model. The resulting grounding, with both
the AMDP hierarchy level and reward function, fed directly
into the AMDP planner resulting in almost instantaneous
planning and execution. Numerous commands ranging from
the low-level “Go north” all the way to the high-level “Take the
block to the green room” were planned and executed using the
AMDP with imperceivable delays after the conversion from
speech to text. A video demonstration of the system running
end to end is available online 1.

VI. DISCUSSION

We present baseline results highlighting the difficulty of
task grounding when modeling nuance in natural language,
and go on to show dramatic improvement using our proposed
methods. Furthermore, we show that while ignoring the un-
derlying structure of natural language may result in better
task grounding performance, the remaining planning problem
cannot be solved efficiently for large domains. Together, our
results demonstrate that we can maintain highly accurate task
grounding as well as robust, efficient planning in complex
environments. Finally, we demonstrate an end-to-end system
using our approach deployed on a mobile robot.

1https://youtu.be/9bU2oE5RtvU

Overall our best grounding model, Single-RNN performed
very well, correctly grounding commands much of the time;
however, it still experienced errors. At the lowest level of
abstraction, the model experienced some confusion between
robot navigation (agentInRoom) and object manipulation
(blockInRoom) tasks. In the dataset, some users explicitly
mention the desired object in object manipulation tasks while
others did not; without explicit mention of the object, these
commands were almost identical to those instructing the robot
to navigate to a particular room. For example, one command
that was correctly identified as instructing the robot to take the
chair to the green room in Fig. 3a is “Go down...west until you
hit the chair, push chair north...” Alternatively, a misclassified
command for the same task was “Go south...west...north...”
These commands ask for the same directions with the same
amount of repetition (omitted) but only one mentions the
object of interest allowing for the correct grounding. Overall,
83.3% of green room navigation tasks were grounded correctly
while 16.7% were mistaken for green room object manipula-
tion tasks.

Another source of error involved an interpretation issue
in the video demonstrations presented to users. The robot
agent shown to users as in Fig. 3a faces south and this
orientation was assumed by the majority of users; however,
some users referred to this direction as north (in the perspective
of the robot agent). This confusion led to some errors in the
grounding of commands instructing the robot to move a single
step in one of the four cardinal directions. Logically, these
conflicts in language caused errors for each of the cardinal
directions as 31.25% of north commands were classified as
south and 15% of east commands were labeled as west.

Finally, there were various forms of human error throughout
the collected data. In many cases, users committed typos that
actually affected the grounding result (e.g. asking the robot to
take the chair back to the green room instead of the observed
blue room). For some tasks, users often demonstrated some
difficulty understanding the abstraction hierarchy described to
them resulting in commands that partially belong at a different
level of abstraction then what was requested. In order to avoid
embedding a strong prior or limiting the natural variation of
the data, no preprocessing was performed in an attempt to
correct or remove these commands. A stronger data collection
approach might involve adding a human validation step and
asking separate users to verify that the supplied commands do
translate back to the original video demonstrations under the
given language constraints as in MacMahon et al. [18].

VII. CONCLUSION

In this paper, we presented a system for interpreting
and grounding natural language commands to a mobile-
manipulator (pick-and-place) robot at multiple levels of ab-
straction. To the best of our knowledge, our system is not
only the first work to ground language at multiple levels of
abstraction, but also the first to utilize deep neural networks for
language grounding on robots. We demonstrate that integrating
such a language grounding system with a hierarchical planner

https://youtu.be/9bU2oE5RtvU


allows for the specification and efficient execution of a wide
range of robot tasks, fostering a very natural human to robot
interaction. Additionally, through our Turtlebot demonstra-
tions, we show that this system works well in real-world
environments.

Future work should extend this system via application to a
large variety of real-world scenarios. Such a system would be
effective in any environment where having multiple levels of
abstraction make sense; for example, in surgical and household
robotics. Additionally, it would be incredibly fruitful to extend
the models proposed here to operate on natural language com-
mands specified at a mixture of abstraction levels to further
reduce the constraints on natural language and facilitate a more
natural human-robot interaction. Alternate future work would
relax the assumptions made in this work and allow for full
variation in language or full variation in planning abstraction;
one might, for example, learn abstraction hierarchies directly
from the language.
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APPENDIX

Here we provide details of the various language modeling
approaches used for task grounding including a breakdown of
the specific details of the IBM Model 2 Language Model, as
well as each of the separate deep neural network models.

Recall that, given a natural language command c, we find
the corresponding level of the abstraction hierarchy l, and the
reward function m that maximizes the joint probability of l,
m given c. Concretely, we seek the level of the state-action
hierarchy l̂ and the reward function m̂ such that:

l̂, m̂ = argmax
l,m

Pr(l,m | c) (7)

A. IBM Model 2 - Statistical Language Model:

IBM2 is a generative model that solves the following
objective, which is equivalent to Eqn. 7 by Bayes’ rule:

l̂, m̂ = argmax
l,m

Pr(l,m) · Pr(c | l,m) (8)

In this equation, the first term, Pr(l,m) can be treated as
a distribution over the reward function space. We make the
assumption that each (l,m) tuple is distributed uniformly at
random. Thus, the IBM2 learning objective simplifies to the
following:

l̂, m̂ = argmax
l,m

Pr(c | l,m) (9)

This probability of a natural language command (c) given the
reward (m) and level of abstraction (l) is then given by the
following IBM2 equation:

Pr(c|m, l) = η(nc|nm, l)
∑
a

nc∏
j

δ(aj |j, nc, nm, l)τ(cj |maj , l)

(10)
where η, δ, and τ are IBM2 specific parameters that are learned
via the EM algorithm. η(nc | nm, l) denotes the probability of
generating a natural language command of length nc from
a reward function of length nm, and level l. The sum is
defined over all possible alignments of natural language words
to reward function tokens. For computational efficiency, we
approximate the sum by sampling from the set of possible
alignments, following standard practice.

We take a standard approach to training our IBM2 using the
EM algorithm with a “bake-in” period where the EM algorithm
is run for a set number of iterations only for translation param-
eter (τ ) updates. We then learn follow with regular iterations
of the EM algorithm where both the translation parameters (τ )
and the alignment parameters (δ) are updated. We estimate the
length parameters (η) using Maximum-Likelihood estimation.

At inference time, to pick the (l,m) tuple that maximizes
the objective from Equation 9 we calculate the IBM2 proba-
bility for every possible (l,m) combination, using the IBM2
as a reranker over the possible reward function translations.
We find this gives significantly better results than beam-search
decoding due to the relatively small size of the reward function
space, as well the formulaic nature of each reward function
string.

B. Multi-NN - Multiple Output Feed-Forward Network:

A breakdown of the exact network transformations is as
follows:

~e = Lookup(E,~c)
~s = ReLU(~e ·Ws + bs)

~t = ReLU(~s ·Wk
t + bkt )

~o = Softmax(~t ·Wk
t + bkt )

Here, the layer specific weight and bias parameters are given
by W,b respectively. Superscripts denote output-specific pa-
rameters and the (·) operation denotes matrix-vector product.
In order to produce high-dimensional, fixed-size representa-
tions of each word in the finite natural language vocabulary,
the initial embedding layer contains a lookup matrix E, trained
via backpropagation with the rest of the model, where each
row denotes a single word embedding. The embedding for all
words in ~c are summed together according to their respective
frequencies to produce an embedding for the full natural
language command. All hidden layers employ the rectifier
activation function (ReLU) whereas the final output layer
produces a Softmax distribution over the output categories.

The fixed-size embedding is then passed through a neural
network layer (shared across all outputs), with a ReLU non-
linear activation, generating a hidden state vector ~h. This
hidden state vector is passed through an output-specific hidden
layer, also with a ReLU activation, and finally an output-
specific read-out layer, with a Softmax activation, to generate
a probability distribution over the output categories. The loss
is computed as the sum of the cross-entropy loss over the
different outputs - namely, the computed loss for the level
selection distribution, and each of the three different reward
function distributions.

C. Gated Recurrent Units

Both the Multi-RNN and Single-RNN models leverage
Gated Recurrent Unit (GRU) cells, a specific type of Recurrent
Neural Network cell. GRU Cells only maintain a single hidden
state h, and the update rules are as follows:

~zt = σ(Wz · ~xt +Uz · ~ht−1 + bz)

~rt = σ(Wr · ~xt +Ur · ~ht−1 + br)

~nt = Tanh(Wh · ~xt +Uh · (~rt � ~ht−1) + bz)

~ht = (~1− ~zt)� ~ht−1 + ~zt � ~nt

Here, the (·) operation denotes matrix-vector product, while
the (�) operation denotes element-wise product. The interme-
diate vectors ~z, ~r act as update and reset “gates” dictating how
much of the hidden state should be overwritten with the new
information in xt. The parameters W,U,b are specific to the
GRU cell, and are trainable via backpropagation along with
the rest of the model. The hidden state h is initialized as the
zero vector at t = 0.



D. Multi-RNN - Multiple Output Recurrent Network:

We now give a detailed breakdown of the exact network
transformations that make up the Multi-RNN:

~e1, ~e2 . . . ~en = Lookup(E, c1, c2 . . . cn)
~h = GRU(~e1, ~e2, . . . ~en)

~s = ReLU(~h ·Ws + bs)

~t = ReLU(~s ·Wk
t + bkt )

~o = Softmax(~t ·Wk
t + bkt )

Again, layer parameters are given by W,b, with superscripts
denoting output-specific parameters. The loss is the same as
that used by the Multi-NN model.

E. Single-RNN - Single Output Recurrent Network:

A detailed breakdown of the Single-RNN transformations
are as follows:

~e1, ~e2 . . . ~en = Lookup(E, c1, c2 . . . cn)
~h = GRU(~e1, ~e2, . . . ~en)

~s = ReLU(~h ·Ws + bs)

~t = ReLU(~s ·Wt + bt)

~o = Softmax(~t ·Wt + bt)

Note that these transformations are exactly the same as the
Multi-RNN, with the sole exception that there is only a single
output, rather than multiple. As there is only a single output,
the new loss is just the cross-entropy loss of the predicted joint
level-reward function distribution.
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