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Abstract

A key goal in robotic control is building systems that can efficiently learn and
generalize from minimal data. A promising approach for building such systems
is by pretraining visual state representations from large datasets of videos. Un-
fortunately, in-distribution data for robot manipulation is scarce; to mitigate this,
prior work has turned to pretraining on diverse data sources, such as egocentric
videos of humans. Underlying this work is a fundamental question – how are these
models able to transfer to downstream robotic control tasks effectively? A set of
distribution shifts separates the pretraining and the downstream robotic control data
distributions – for example, different tasks, camera configurations, visual features,
behaviors, and morphologies. Understanding these shifts is key to understanding
where existing methods fall short, and is also critical for developing better pretrain-
ing approaches moving forward. This understanding is our key contribution: we
present a large-scale empirical study that identifies 5 types of distribution shifts,
and uses simulation to generate precise, controlled pretraining data and target tasks
that capture each shift. Given these datasets, we analyze how various pretraining
methods perform as we vary the type and magnitude of each shift. Our experiments
show that while distribution shifts impact performance, we can often overcome

these shortfalls through a combination of diversity coupled with test-time adap-
tation. We also identify settings where surprisingly, the benefits of diversity and
adaptation outweigh the cost of the distribution shift, where pushing models further
out of distribution leads to improved downstream performance.

1 Introduction
Research in robotic manipulation is guided by an aspiration for systems that can learn from a
handful of examples and generalize efficiently to novel scenes. One way towards this aspiration is
by pretraining visual state representations, leveraging diverse datasets that encapsulate features of
real-world manipulation – interactions such as simple pick and place and nuanced behaviors like
opening the pull tab on cardboard cereal boxes. Pretraining has been effective in natural language
processing [11, 50, 5] and computer vision [21, 7, 12], with pretrained models forming a strong base
for downstream tasks [67, 66, 10]. While these models exhibit remarkable generalization potential, a
key ingredient to their success has been enormous amounts of rich, source data (e.g., language on
public forums, images in the wild) – data at a scale that we lack in robotic manipulation.

To mitigate this, recent work on pretraining visual state representations [46, 72, 42] has looked into
in-the-wild datasets of human videos instead [17, 9, 41, 18], hoping to transfer enough knowledge
to generalize to downstream manipulation tasks. Though this work has been effective in enabling
sample-efficient learning on a small set of specific tasks, we have yet to understand where this
generalization ability comes from, and on what types of downstream tasks these approaches may fall
short. Transferring representations learned from human videos to robotic control involves navigating
a set of different distribution shifts between the source pretraining data and downstream target task
data. This work seeks to find an understanding of this by studying the following question: what are
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Figure 1: An overview of our empirical study on how pretrained state representations for robotic control transfer
across distribution shifts. We evaluate on the 5 shifts pictured above.

the different types of distribution shifts underlying video representation learning for control, and

what is their effect on downstream performance?

The aforementioned pretraining approaches [46, 72, 42] show improved sample efficiency and
generalization relative to the dominant tabula rasa approaches in robot learning. To better understand
how these methods that pretrain on human videos see success when adapting to downstream robot
control tasks, we identify and measure the effect of different types of distribution shifts between
pretraining and target task data. We seek to answer questions about when to expect efficient transfer
across a set of 5 representative distribution shifts: Task Mismatch – if the pretraining data does
not fully “cover” the full distribution of objects and interactions in the downstream tasks, are the
learned representations still helpful? Camera Configuration – how does training on various camera
angles transfer to new camera positions? Visual Features – how do shifts in color and texture
affect downstream performance? Suboptimal Behaviors – how does the quality of behaviors in our
source data, impact downstream performance? Finally, Morphology – how does pretraining affect
downstream transfer to a disjoint embodiment (e.g., a different robot).

Our contribution is a large-scale empirical study of the effects of these 5 different types of distribution
shifts between pretraining and target task data distributions. For each shift, we design precise
“source” pretraining data and “target” control tasks. We evaluate a spectrum of representation
learning approaches including methods that reconstruct visual inputs via a latent bottleneck [33, 13],
contrastive methods [54], and forward predictive methods [68, 34]. To understand how data diversity
affects downstream performance in the extreme, we include R3M [42], a model pretrained on 3,000
hours of human egocentric manipulation. We evaluate each pretraining method across different
amounts of adaptation data, random seeds, and each shift.

We also perform a series of systematic ablations; many data sources for pretraining (e.g., human data)
do not come with any action supervision (e.g., hand or end-effector pose); to understand the effect of
this, we examine the impact of action-conditional and state-only data on pretrained representations.
We also evaluate the impact of various downstream adaptation paradigms. Our takeaways are clear:

1. Unsurprisingly, large distribution shifts between source and target domains make frozen
pretrained representations less effective on average.

2. However, fully finetuning pretrained representations on minimal target task data recovers
much of the original performance, as long as the shift is not extreme.

3. Finally, behavioral shifts provide insight on what pretraining data matters; training on diverse
behaviors (with different amounts of suboptimality), leads to flexible representations that
can be adapted to exceed the performance pretraining directly on the target distribution.

This paper confirms much of the empirical knowledge around pretraining and representation learning;
if there is certainty around the target domain, then pretraining on data from that distribution is often
the right choice. But our analysis also shows that if the pretraining data is sufficiently diverse and

high-coverage, one can learn flexible representations that accelerate downstream learning.
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2 Related Work
We build on a long tradition of work spanning state representation learning for control and work that
specifically builds frameworks to analyze and understand distribution shifts.

State Representation Learning for Control. Representation learning components are pervasive in
high-dimensional control settings, especially when dealing with visual observation spaces. These
methods learn to condense an observation down to a lower-dimensional space that captures only
the features relevant for informing control. Typical methods for representation learning include
reconstruction or forward modeling [32, 40, 16, 69, 13, 65, 28, 2, 15, 34, 20, 38], inverse modeling
[47, 55, 1, 75], and contrastive learning [64, 57, 54, 42, 43], amongst others [36].

While these prior works are legion, the focus tends to be on learning representations tabula rasa

updating representations online while learning to solve the target task. In contrast, this work focuses
on pretrained state representations learned offline. Recent work [46, 72, 42] in this regime looks
at different – often large – datasets that are quite different from the target tasks (e.g., egocentric
videos of humans cooking), then finetuning these learned representations for downstream control.
For example Parisi et al. [46] study several representations pretrained on standard computer vision
datasets like ImageNet [10], evaluating on several control tasks, performing a study of when data
augmentation during pretraining is helpful. Separately, Nair et al. [42] introduce R3M, a model that
uses videos and language annotations from the large Ego4D dataset [18] in addition to language and
time contrastive losses [54, 49] to learn state representations for imitation learning.

Other work performs representation learning from fixed datasets with different augmentations [6], or
use data spanning multiple disjoint datasets collected in the same general environment [73]. Each
work makes different assumptions when it comes to data – be it in-domain demonstrations, disjoint
demos in the same environment, static images from large databases, or videos of humans. The goal of
this work is to understand how different choices of data affects the downstream performance. Rather
than propose new methods, we perform an empirical investigation that studies the distribution shift
between the pretraining and downstream task distribution.

Understanding Distribution Shifts. A rich body of work studies distribution shifts in machine
learning with broad coverage of problems such as out-of-distribution detection [37, 23, 24, 35] and
generalization [61, 14, 63, 56, 58, 3]. Informed by this work, recent work has proposed concrete
benchmarks to concretely measure model performance over various taxonomies of distribution shift
[22, 3, 71, 30]. The most relevant work by Wiles et al. [70] provides a fine-grained analysis of various
hand-crafted distribution shifts with a combination of real and synthetic datasets, in the context of
image classification. The key difference with our work is our focus on taxonomizing and evaluating
shifts in the context of pretraining visual state representation for transfer to downstream control
tasks; unlike work in classification and regression, learning from videos, and evaluating on sequential
decision making tasks present a series of completely new distribution shifts around behaviors, camera
configuration, and morphologies, that we actively study in this work.

Within robotics, research into distribution shifts has focused on specific sub-problems such as domain
adaptation [62, 19], sim-to-real transfer by learning inverse dynamics models [8], and domain
randomization for cross-environment transfer [59, 52, 48, 44]. Each of these works focus on a single

type of shift, and analyze a method for addressing the shift, rather than studying the underlying data
distribution. In this work, we instead focus on the data directly, fixing the methods, and evaluating how
pretrained models transfer given different amounts of adaptation data and under different adaptation
schemes, under each of the 5 distribution shifts we identify.

3 Problem Statement and Experimental Setup
We study how the pretraining data distribution for visual state representation learning influences
downstream control performance. Our experiments take the following form: We first learn a visual
state representation by pretraining a given method on a fixed dataset. We then train a policy on top
of the pretrained state representation via behavioral cloning on demonstrations from the target task
distribution. We learn policies by either training a small network on top of the frozen pretrained
representation, or by finetuning both the policy network and pretrained encoder together.

Formally, the pretraining dataset D consists of videos represented as T RGB frames [I0, I1, . . . , IT�1]
without action labels. We train an encoder q� that maps images I to a representation z, where
z = q�(I). We step through the different encoding methods and their objectives below.
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To adapt to downstream tasks after pretraining, we train policies on small datasets Ddemo of tra-
jectories [[I0, s0], a0, [I1, s1], a1, ..., [IT�1, sT�1]] with behavioral cloning (BC). We concatenate
the visual representation with the robot’s proprioceptive state as input to the policy, resulting in
at = ⇡ ([q�(It), st]). When training, we either freeze the representation and only update the policy,
or finetune all parameters end-to-end. To avoid feature distortion when finetuning, we follow the
two-step strategy of linear probe, then full finetune (LP-FT) [31]. We include an ablation study of
other adaptation methods in §5.

Dataset Construction. In this work, we identify 5 shifts – task mismatch, camera configuration,
visual features, suboptimal behaviors, and morphology – each of which is inspired by salient shifts
that appear when transferring from a large offline dataset for pretraining (e.g., from human videos,
videos of other robots performing tasks) to target control tasks (e.g., a different robot manipulator
performing a pick-and-place task in a new environment). While these shifts are not exhaustive, they
do cover different parts of an underlying Partially Observable Markov Decision Process (POMDP);
task mismatch directly affects the reward function, camera configuration and visual features affect the
observation model, suboptimality implicitly affects the reward and transition model, and morphology
affects both transitions and observations.

To carefully study each of the 5 identified distribution shifts, we first identify a set of downstream
tasks from which we compose our fixed target distribution. Subject to this fixed target distribution,
we then generate multiple pretraining datasets that represent different types and magnitudes of
distribution shift. Each shift has an “in-distribution” pretraining dataset Din-dist, where the videos
are collected directly in the fixed target environment. Each dataset consists of 200 videos from a
noise injected closed-loop policy. We follow a similar procedure for each of the different “distribution
shifted” pretraining datasets.

Concretely, take the Camera Configuration as an example. We first start with a downstream target
environment with a single camera position (first component of Fig. 5). To construct our first
distribution shift dataset (with shift of small magnitude), we then collect our first pretraining dataset
by repeatedly injecting a small amount of noise into the camera angle, obtaining dataset Dshift1

(second component of Fig. 5). By injecting more and more noise, we can move the distribution
further away from the target, resulting in a moderately shifted dataset Dshift2 and further shifted
dataset Dshift3. We follow similar procedures for each of shifts, with more details in §4.

Pretraining Objectives. We consider three objectives for training: reconstruction, forward prediction,
and contrastive learning. For reconstruction and forward prediction, we employ the �-VAE [25]
which minimizes:

Lvae = EIi⇠D[Eq�(z|Ii)[log p✓(Itarget|z)]� �DKL(q�(z|Ii)||p(z))]

where p✓(I|z) is a decoder which is trained jointly with the encoder q�(z|I) to reconstruct the
frame I from the latent bottleneck z. Itarget is set to the current frame Ii for reconstruction and
n-frames ahead (Ii+n) for forward prediction. We use n = 5 for all our forward prediction pretraining
experiments.

For contrastive learning, we train Time Contrastive Networks (TCN) [54] by sampling a batch B of
quadruples (Ii, Ij , Ik, I 0) from the dataset, where j > i, k > j and I 0 sampled from a different video.
We minimize an InfoNCE loss [64] of the following form:

Ltcn = �
X

(Ii,Ij ,Ik,I0)2B

log
eS(Ii,Ij)

eS(Ii,Ij) + eS(Ii,Ik) + eS(Ii,I0)

Here, S measures the similarity between the representation of two images. In our experiments, we
use the negative L2 distance S(I1, I2) = �||q�(I1)� q�(I2)||22.

4 Experiments and Results
We leverage simulation to precisely control and generate data representative of the shifts we care
about. Namely, we use tasks and features from MetaWorld [74] and RoboMimic [39], both of
which are built with Mujoco [60]. MetaWorld provides a diverse set of configurable environments,
making it ideal for studying shifts such as task mismatch, camera configuration, and visual features,
whereas RoboMimic comes with out-of-the-box support for multiple robots and precollected human
demonstration data of differing qualities, allowing us to directly study the remaining shifts we
identified around suboptimal behaviors and morphology transfer.
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Figure 2: Task Mismatch – when the pretraining data does not fully “cover” the full distribution of objects and
interactions in the downstream tasks. To study this, we use MetaWorld ML10 and collect pretraining data with
tasks on the left, then evaluate the representation with tasks on the right.

Figure 3: Task Mismatch – Results: Left. We plot the performance of pretraining on in-distribution (in-dist)
data and Task Mismatch (task-shift) data for two methods, aggregated across 5 environments, 5 dataset sizes,
and 3 seeds. Right. We look at pretraining with a Reconstruction-based approach, and evaluate downstream
control performance against other methods.

While we pretrain all our models on 200 examples as described in §3, for adaptation for each task,
we operate in a low-data regime; to study the effects of distribution shifts on sample-efficient transfer,
we consider downstream task learning with n = [5, 10, 25, 50, 100] demonstrations for each shift. To
evaluate success, we compute average task success rate by rolling out our policy across 50 episodes.
All tasks contain inherent variability, e.g. different initial object positions and robot start state.

To provide two extra points of comparison for our various pretrained models, we first run behavioral
cloning from scratch on the ground-truth simulation state, which provides a low-dimensional vector
of absolute poses of objects in the scene; this is meant to represent a “full-information” upper-bound,
though note that given a strong enough visual representation and enough finetuning data, it is possible
for models to surpass this performance. As the second reference point, we run behavioral cloning from
scratch on images, using a randomly initialized convolutional neural network encoder, to evaluate
whether pretrained representations exhibit positive transfer.

4.1 Task Mismatch
The first shift we look at is task mismatch, where the downstream target task is not captured in the
pretraining dataset. This is arguably the most common, natural shift that most agents will face when
transferring pretrained representations from other datasets. Yet, despite its commonality, this type of
transfer can be challenging, as it could involve perceiving new objects, scenes, and skills. Taking a
workshop as an example, tools like a level could be absent during pretraining, and similarly, the robot
would not necessarily have a skill for identifying the fulcrum location, and pull down on the lever
appropriately. Despite this, the goal would be to learn to pull the lever from few demonstrations.

We use MetaWorld ML10 benchmark for this experiment, as depicted in Fig. 2, comprised of 10
pretraining environments, and 5 disjoint target environments. We fix the target environments as
downstream tasks, and pretrain representation models either videos of the robot performing 10
training tasks combined (task-shift) or on each of the target tasks (in-dist).

In Fig. 3 (left), we plot the performance of reconstruction and prediction models, together with R3M.
We aggregate the performance across all sizes of Ddemo, 5 environments, and 3 random seeds. We
adapt all representations with LP-FT, and we refer readers to the appendix for detailed results with
frozen representations and contrastive methods. All pretrained representations outperform training
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(a) Camera configuration. (b) Visual Features (c) Suboptimal Behaviors (d) Morphology

Figure 4: Results for the 4 core shifts, aggregated across environments, number of demos, and random seeds.

Figure 5: Camera Configuration – transfer to new camera positions unseen in pretraining data. The red dot
marks the downstream camera, and each shifted distribution is uniform bounded by the two rendered cameras.

from scratch, with in-dist pretraining achieving performance close to oracle state. On task-shift
however, the success rate drops by almost 10%. We also note that R3M, despite training on only
human videos, is able to achieve close to in-dist data. Separately, in Fig. 3 (right), we focus only
on the reconstruction pretraining method and plot success rate as we increase the size of Ddemo for
different target tasks. Despite the varying task difficulty, the ranking of different methods is relatively
stable across environments.

4.2 Camera Configuration
The second shift we look at is camera configuration, where the location of the camera in the target task
differs from the camera configurations seen during pretraining. These changes could be small (e.g., the
camera gets jostled) or large (e.g., we deploy on new hardware, with new camera intrinsics/extrinsics).
We focus our experiments on varying camera angles relative to the robot workspace, and illustrate
shifts in Fig. 5. During downstream evaluation, the camera is fixed in the pose illustrated in the
in-dist subfigure. The camera’s position is marked with a red dot that is kept at the same pixel
location in the image across all subfigures for reference.

In shift-1, the camera angle is sampled from a uniform distribution bounded by the two cameras
visualized in the figure. They span ±10° around the target camera’s orientation. For shift-2 and
shift-3 we translate move the distribution to the right, by 10° at a time (ensuring all angles do
not occlude any relevant objects). Similarly to Task Mismatch, we then use the 5 target tasks from
MetaWorld ML10 for evaluation. Since we only want to evaluate camera shift in this experiment, we
use the same 5 tasks for pretraining as well. As we have 3 shifts for each task and 3 random seeds,
this gives us 5⇥ 3⇥ 3 models for each training objectives.

We plot the aggregated performance in Fig. 4 for both frozen representations and LP-FT representa-
tions. Camera shift drops the success rate of frozen representation by as much as 21% compared to
pretraining directly on the target distribution, resulting in downstream performance worse than train-
ing from scratch. Despite the performance with frozen representations, the pretrained representations
provide a surprisingly good basis for adaptation. After LP-FT, the gap between pretraining on the
target and the pretraining on the shifted distribution shrinks to 8-12%.

4.3 Visual Features
While we want the pretraining data to cover a wide range of visual phenomenon, the robot may still
encounter objects with new appearances at test time; as such the third shift we look at are shifts in
visual features (e.g., color, texture) between the pretraining data and downstream task. We focus on
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Figure 6: Visual Features – We randomize the colors and evaluate it’s effect on downstream performance.

Figure 7: Suboptimal Behaviors - how does the quality of behaviors in source data impact downstream
performance? We inject different amounts of noise to the policy to construct 5 datasets with gradual suboptimality.

Figure 8: Morphology - we study the transfers across embodiments by pretraining representation on 5 different
robot arms and evaluating downstream on a new robot.

the varying color of various objects in a scene, and conduct experiments with the 5 target tasks of
MetaWorld ML10. Fig. 6 shows samples from the shifted pretraining dataset, where the drawer is
assigned a random color for each video while the downstream distribution has a fixed color. The
aggregated performance in Fig. 4 suggests that pretraining with randomized colors outperforms
training from scratch. Similar to the camera configuration shift, adapting the representation closes
the gap between in-distribution and visual shift pretraining from 11% to 8%.

4.4 Suboptimal Behaviors

The fourth shift we look at is regarding the agent behavior when solving tasks, especially transferring
from suboptimal pretraining data to downstream “optimal” control. This shift is particularly prominent
when data is coming from human, either through teleoperating a robot or with their own hands: human
behavior can be non-deterministic and include lots of spurious data (e.g., pausing to brush ones hair
back), while a scripted or learned robot policy would provide optimal and predictable demonstrations.

We focus our experiments on injecting different magnitudes of action noise into optimal demon-
stration data, to create different pretraining datasets. We illustrate some example trajectories in
Fig. 7 traced with pink squares. We sample noise from a Gaussian with standard deviation in
[0.05, 0.8, 1.6, 2, 4, 3.2]. This gives us 5 distinct data distributions, from near-optimal behavior grad-
ually to random motion. The success rate in pretraining data drops from 100% to near-zero when
noise magnitude exceeds 1.6.

We experiment with the Lift and Can task from RoboMimic, where the robot needs to either pick up a
red cube on the table, or pick up and move a red can. After pretraining, we imitate the policy with 0.05
noise injected, and plot the aggregated performance of Lift across different number of demonstrations
and random seeds in Fig. 4. We defer the plot of Can to the supplementary material. With a frozen
pretrained representation, the performance peaks at noise-level 0.8, then quickly declines to less than
5% success for noise-levels of 2.4 and 3.2, which is worse than training from scratch. However,
with adaptation, the performance continues to increase with more noise and peaks at noise-level
2.4, then remains high at 3.2 where the behavior are close to random. Notably, for both frozen and

7



Figure 9: Ablation Studies. On the left, we compare the success rate of representation trained with and without
action on downstream tasks. On the right, we plot the performance of three adaptation methods.

finetuned representations, the peak performance does not coincide with in-distribution pretraining
(i.e. noise-level 0.05), unlike all prior shifts.

4.5 Morphology

Finally, morphology mismatch is when the robot we want to control at test time is not present in the
pretraining data. This includes the scenarios when pretraining data is coming from humans or other
types of robots. Overcoming such mismatch is challenging because the embodiment tends to form a
large part of the observation, and affects how the robot interacts with the environment.

We use the same downstream tasks as in behavior shift, while collecting pretraining data from 5
robots: {Sawyer, IIWA, Jaco, Kinova3, UR5e}. We plot the aggregated performance in Fig. 7.
Similar to the result from camera configuration shift, the frozen representation with morphology
mismatch shows no positive transfer when compared to training from scratch, while still producing a
representation amenable to adaptation. LP-FT doubles the frozen representation’s success rate and
reduces the gap from in-distribution pretraining to 11%.

5 Ablation Studies
5.1 Action vs. No Action

One caveat when using in-the-wild videos to pretrain visual state representations is the lack of action
information. This prevents us from applying standard techniques like dynamics modeling. In this
section, we investigate how action information influences the downstream performance of pretrained
representation. We study this question against the backdrop of the task mismatch distribution
shift, where we pretrain representations on data from 10 pretraining tasks from MetaWorld ML10,
and downstream performance on the 5 downstream target tasks. We compare the performance of
representations learned via standard dynamics modeling, i.e. predicting from (It, at) to It+1, against
no-action prediction that maps It to It+1 directly.

We plot the result for each environments in Fig. 9 (left). Across environments, representations learned
without action information performs on-par with those from standard dynamics modeling.

5.2 Adapting Pretrained Representations

Identifying the best way to adapt pretrained state representations to downstream tasks remains an
open problem [46, 45, 42]. Two typical approaches for adaptation are (1) training a policy (additional,
added parameters) with the frozen representation as input and (2) full finetuning of all parameters
(in the policy and in the representation learning model). There are pros and cons to each approach;
frozen representations might not capture all the information we need from the image, and therefore
lack flexibility in the presence of large distributino shifts. On the other hand, full finetuning schemes
distort pretrained features, leading to poor out-of-distribution generalization [31, 53]. To mitigate
this last problem though, Kumar et al. [31] show that the two-step strategy of linear probing then
full fine-tuning (LP-FT) outperforms both fine-tuning and linear probing on a range of computer
vision benchmarks, and also improves OOD performance. We conduct experiments comparing frozen
representation, full finetuning, and LP-FT in the context of the task mismatch distribution shift on
MetaWorld ML10. In Fig. 9 (right) we show that LP-FT outperforms both full finetuning and frozen
representations across the 5 tasks and varying number of demonstrations.
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6 Discussion

Each of the distribution shift experiments hint at a broad conclusion: as we increase the magnitude of
the distribution shift between our pretraining data distribution and our target task data distribution,
downstream policy performance seems to suffer. This is especially true for shifts like Task Mismatch
(§4.1), Visual Features (§4.3), as well as Morphology (§4.5). However, not all of our shifts behave in
this fashion; indeed, the Suboptimal Behaviors (§4.4) shift shows a key difference. As we increase the
magnitude of the shift – in this case, the amount of noise in our behavioral data, leading to suboptimal
videos where the robot takes seemingly random motions – we see a surprising divergence between
the performance of frozen vs. finetuned downstream performance. Frozen performance degrades
quite quickly as we increase the magnitude of the shift, yet finetuning follows a non-linear trend,
where the finetuning downstream performance actually grows, eventually exceeding the performance
of the representation that is pretrained directly on the target domain!

This seems to indicate something deeper about the role of diversity in creating flexible representations.
Based on these results, it seems like the less diverse the pretraining data, the less amenable to
finetuning the representation will be. This is demonstrated across most of our experiments by just
looking at the delta between the frozen and finetuned representations when pretraining directly on
target domain data. Instead, adding diverse data – and nonintuitively, even just random action data in
these robotics contexts – produces arbitrarily worse frozen representations (as evidence by both the
Camera Configuration and Suboptimal Behavior) results, but produce representations that can easily
recover most of, if not exceed, the performance gap when finetuned.

This leaves us with the following takeaways:

Takeaway 1. For frozen representations, large gaps between pretraining and downstream task
distributions lead to worse downstream performance.

Takeaway 2. Generally, across most of the shifts we study, finetuning representations pretrained on
sufficiently diverse data can recover most of the performance lost by the shift in question.

Takeaway 3. Optimizing for diversity in pretraining data, even if one cannot cover or approximate
the target distribution allows for flexible representations that are maximally amenable to finetuning
and adaptation, allowing for sample-efficient transfer – transfer that can exceed the performance of
training directly on the target distribution itself.

This final takeaway should inform future work on building pretraining datasets – coverage and scale
alone are not enough. It is just as important to collect data captures diverse behaviors – including
suboptimality – that cover multiple ways of performing a given task.

7 Conclusion, Limitations, and Future Work

This work presents a large-scale empirical study of 5 different distribution shifts that arise when
transferring pretrained visual representations to downstream tasks in robotic control. At first glance,
our results are not surprising; we confirm that when the target data distributions are known, pretraining
on broad source datasets that cover the various targets is beneficial. However, we surprisingly find
that in some cases, diversity of the source data – and in the case of robotics data, explicitly suboptimal
data or data that encompasses multiple modes – can lead to improved performance of the pretrained
representations when finetuned. Ensuring that future pretraining datasets are not only broad coverage,
but capture diverse behaviors will be key to learning powerful visual state representations.

This work is only the beginning – as we develop more datasets, pretrained models, and different
evaluation tasks, the need for targeted studies around this type of transfer will be necessary. The key
limitations of our work are the scope of shifts we study and the construction of shift datasets. We work
in simulation to generate controlled data ascribing to our shifts; capturing the effect of distribution
shifts in the real world will be much harder, but is necessary for robust claims. A promising direction
for future work would develop similar studies on real robots, as well as evaluate other types of
representation learning. Robotics is inherently multi-modal, fusing inputs from different sensor
modalities and even different types of human feedback; understanding shifts that go beyond visual
state representations will become increasingly important in the years to come.
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A Experiment Details
A.1 Architecture and Hyperparameters
We first describe the architecture of our representation learning models, as well as the policy network
that we train on top for each of our evaluations. For all representation learning models, we use the
same encoder architecture as FitVid [4], a state-of-the-art video prediction model that compresses
histories down to a low-dimensional latent space, before reconstructing the next video frame. The
FitVid model is comprised of “blocks,” each of which consist of a sequence of a Convolutional layer
followed by Batch Normalization [27], Swish activation [51], and a Squeeze & Excite unit [26]. In the
original FitVid paper, the decoder architecture mirrors the encoder, with critical skip connections that
connect the intermediate activations between the two components. While useful for video prediction,
we find in our preliminary experiments that the skip connection actively hurts representation learning
performance, as the model learns to rely on temporal redundancy embedded in the skip connection
history. Removing the skip connections in this architecture for all our representation learning models
leads to higher quality representations, and improved downstream performance. We train different
encoders for Metaworld and RoboMimic, mostly due to the inherent observation resolution; for
Metaworld, we learn an encoder that takes in an image with resolution 64⇥64, while for RoboMimic,
we learn an encoder that takes in an image with resolution 84 ⇥ 84. Both encoders compress
observations down to a representation with dimensionality 256.

Our policy is built atop this learned encoder, and is simple; we use a multi-layer perceptron (MLP) with
4 hidden layers and 2048 hidden units each. In our preliminary experiments, we found this architecture
to outperform policies with fewer hidden units. Rather than directly outputting a continuous action,
our policy outputs a k-dimensional mean and variance (where k is the dimensionality of the action
space), which parameterizes a Gaussian distribution that is used to sample actions. In MetaWorld,
k = 4, and in RoboMimic, k = 7.

We train the representation learning model with Adam [29] and a learning rate of 0.001. We set the
batch size two times the episode length of the environment, which is around 100 steps. We train the
policy with Adam [29] as well, adopting a larger learning rate of 0.001 when learning from directly
from the ground-truth environment state or when using frozen representations, while using a smaller
learning rate of 0.0001 when finetuning both the encoder and the policy. The batch size is set to eight
times the episode length of the environment. We refer readers to the code in supplementary material
for the exact implementations of each model and optimization procedure.

We stress that all architectures and hyperparameters are fixed throughout our empirical study.

A.2 Checkpoint Selection
Evaluating each model checkpoints during policy learning may incur formidable time cost in real
robotic applications. Taking this into consideration, we minimize the amount of online interactions
needed in both pretraining and downstream finetuning. Rather than evaluate every model checkpoint
in the environment, we select the pretrained encoder checkpoint by evaluating its frozen representation
on one fixed downstream task and demonstration dataset. The best encoder subject to this procedure
is then used for all downstream tasks.

For policy checkpoint selection on the downstream task, we use a fully offline procedure where, for
each training setting, we run 5 seeds with different policy initializations, then choose the 3 seeds with
lowest mean squared error on a held-out set of validation demonstrations, and use their corresponding
checkpoints. We report the mean and standard error across these 3 selected checkpoints, for all
experiments in our study.

A.3 Compute Statistics
We use a combination of Nvidia RTX 3090 (24G) and Titan RTX (12G) GPUs. Because of the large
batch size required by some of our experiments, we employ gradient accumulation to reduce memory
usage. The whole study took around 30 days with 10 GPUs running in parallel. In total, we run more
than 8000+ BC experiments from vision, pretrained 100+ representation models, and generated 100+
GB robot data.

B Additional Results
In the following subsections, we present additional results on each of our distribution shifts with
separate representation learning models.
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(a) Reconstruction (b) Prediction (c) Time Contrastive

Figure 10: Additional results for the Task Mismatch distribution shift (complements Fig. 3). We plot aggregated
performance for Reconstruction, Prediction and Time Contrastive methods. We note that Reconstruction
and Prediction achieves similar performance, while Time Contrastive models pretrained with Task Mismatch
distribution shift outperforms in-distribution pretraining.

Figure 11: Detailed results for Task Mismatch across 5 environments, 9 methods and 5 demo dataset sizes.

B.1 Task, Camera and Color Shift

In this section, we include additional results on the Task Mismatch, Camera Configuration, and Visual
Features distribution shifts, which we evaluated using targeted datasets grounded in the MetaWorld
environments.

Starting with Task Mismatch, we plot the aggregated performance of all three representation learning
methods in Fig. 10. We observe that representations learned with reconstruction objectives perform
similarly to those learned with forward prediction objectives. Furthermore, for both methods,
finetuning reduces the performance gap between in-distribution and distribution shift pretraining.
Separately, representations learned with time contrastive learning reach worse performance than these
other methods: after finetuning, contrastive representations only slightly outperforms training from
scratch, while reconstruction representations and forward prediction representations surpass training
from scratch by at least 10% to 20% success rate. We hypothesize that the effectiveness of time
contrastive pretraining depends more heavily on the diversity of data. We will revisit this hypothesis
as we observe similar trends in the next few distribution shifts. Wrapping up Task Mismatch, we
provide a plot for all three representation methods tested on five downstream tasks in Fig. 11. We
note that in Fig. 3, we omit plotting the “close door” environment as methods all perform similarly
well (it is a quite easy task) and reach 100% success with less than 25 demos.

In Fig. 12, we provide results for the Camera Configuration distribution shift with both the forward
prediction and time contrastive representation learning methods, in addition to the reconstruction
method from the main body of the paper. Consistent with the trend observed for the Task Mismatch
shift, both the reconstruction and forward prediction methods perform similarly, with both approaches
significantly outperforming the representations learned via time contrastive learning. We also note
that for the time contrastive representations, training on data with camera configurations (Dist {2,
3, 4}) outperform training on the in-distribution split (Dist 1). This is interesting, as one might
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(a) Reconstruction (b) Prediction (c) Time Contrastive

Figure 12: Additional results for the Camera Configuration distribution shift (complements Fig. 4(a)). We
again note similar performance from Reconstruction and Prediction, and added diversity from Dist {2, 3, 4}
benefits finetuned performance for Time Contrastive model compared to Dist 1.

(a) Reconstruction (b) Prediction (c) Time Contrastive

Figure 13: Additional results for the Visual Features distribution shift (complements Fig. 4(b)), with similar
trend as in previous shifts.

recall that the Dist {2, 3, 4} dataset splits contain randomized camera configurations while
the in-distribution Dist 1 split contains a single, fixed camera. It is our hypothesis that the time
contrastive pretraining approach benefits heavily from this added diversity; indeed, it seems that
despite the distribution shift, these methods perform better given more diverse, high coverage data.

Finally, we analyze the Visual Features distribution shift, and plot the aggregated performance across
the three sets of methods – reconstruction, forward prediction, and time contrastive – in Fig. 13. We
note an identical trend to both the Task Mismatch and Camera Configuration distribution shifts, where
representations learned with the reconstruction objective perform similarly to those learned with the
forward prediction objective. Similarly, both these approaches outperform the representations learned
via time contrastive learning. The added diversity contained in the Visual Features (illustrated in
Fig. 6) proves beneficial for time constrative learning, as we see a 16% absolute boost in success rate
when training on the distribution shift data, vs. the in-distribution split. This is again consistent with
our running hypothesis: time constrastive learning approaches benefit heavily from diverse datasets,
and perform much worse when the dataset is restricted, and unimodal.

B.2 Behavior and Morphology Shift
In this section, we include additional results on our remaining two distribution shifts – Suboptimal Be-
haviors, and Morphology. Unlike the prior shifts, we evaluated these shifts on the richer RoboMimic
environments. For these shifts, based on the results above, we only evaluate representations learned
with the reconstruction objective, as reconstruction behaves very similarly to forward prediction
objectives across the board, and consistently outperforms representations learned via time contrastive
learning by a large margin.

For the Suboptimal Behaviors distribution shift, we additional plot downstream task success rate
after pretraining our representation on human teleoperation data in Fig. 14(a, b). To obtain this
human teleoperation data, we use the RoboMimic “multi-human” dataset [39], which is collected
by 6 unique human teleoperators, each with a different amount of robot teleoperation proficiency.
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(a) Behavior shift, Lift env (b) Behavior shift, Can env (c) Morphology shift, Can env

Figure 14: Additional results for the Behavior and Morphology distribution shift (complements Fig. 4(c), (d)).
We note that pretraining on human teleoperated data greatly improves performance, while RoboMimic “Can”
task is challenging to solve across the board.

Due to this diversity in proficiencies, and by the natural diversity of preferences across humans when
teleoperating a robot to perform a task, this dataset contains multiple modes of behavior, unlike the
synthetic generated datasets we create that just inject i.i.d. Gaussian noise at each timestep (to get a
base level of difference across trajectories). For fair comparison, we subsample the “multi-human”
so it is of the same size (200 episodes) as the rest of our pretraining datasets we use for all our
other experiments. We observe that pretraining on human-teleoperated data outperforms all levels
of injected Gaussian noise by as much as 15%, for both Lift and Can environments. This confirms
our core takeaway that training on diverse behaviors (with different amounts of suboptimality), leads
to flexible representations that can exceed the performance of pretraining directly on the target
distribution.

Finally, we plot additional results for the Morphology distribution shift for the RoboMimic “Can”
environment in Fig. 14(c). Despite outperforming training from scratch, which obtains 0% success
rate, the performance is still low in general, this is because this is a long-horizon, difficult task with
various “narrow” bottlenecks (grasping the can from the right angle to establish a solid grasp, and
move towards the correct bin).
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