

ADAPTIVE GREY-BOX FUZZ-TESTING WITH THOMPSON SAMPLING

Sidd Karamcheti, David Rosenberg, Gideon Mann Bloomberg - CTO Data Science

FUZZING – A BACKGROUND

► **Fuzzing** is a technique for automated software testing.

Core Idea: Provide programs with unexpected inputs, with goal of finding bugs, maximizing coverage, etc.

- Different types of fuzzers and testing tools:
 - ► Black-Box: Assume no transparency into program.
 - Random generators (good for testing parsers)
 - ► White-Box: Assume lots of transparency (e.g. KLEE)
 - ► Suffer from path explosion as programs get big

GREY-BOX FUZZING & AFL

- Grey-Box Mutational Fuzzers
 - Lightweight
 instrumentation, to
 check code path
 - Mutate existing inputs to generate new test inputs
 - Fast, efficient, and proven - can find lots of bugs
- 1: // Core Algorithm for American Fuzzy Lop (AFL) 2: // time: Fixed time window to fuzz (e.g. 24 hours) 3: // queue: Queue of inputs that exercise new code paths. 4: while *time* has not elapsed do *parent*, *energy* ← pick_input(*queue*) 5: for $i \in range(energy)$ do 6: child \leftarrow parent 7: for $j \in 1$ to sample_num_mutations() do 8: $mutation \leftarrow sample_mutation()$ 9: $site \leftarrow sample_mutation_site()$ 10: *child* ← apply_mutation(*mutation*, *child*, *site*) 11: end for 12: $path \leftarrow execute_path(child, code)$ 13: **if** (*path* is new) **then** queue \leftarrow child 14: end for 15: 16: end while
- ► AFL is best of the bunch!

GREY-BOX FUZZING & AFL - HEURISTICS

Q: How can we do better?

A: Data-Driven, Adaptive Control!

GREY-BOX FUZZING & AFL - RELATED WORK

GREY-BOX FUZZING & AFL - RELATED WORK

GREY-BOX FUZZING & AFL - WHAT'S NEXT?

.

.

1:	// Core Algorithm for American Fuzzy Lop (AFL)
2:	// time: Fixed time window to fuzz (e.g. 24 hours)
3:	// queue: Queue of inputs that exercise new code paths.
4:	while <i>time</i> has not elapsed do
5:	<i>parent</i> , <i>energy</i> ← pick_input(<i>queue</i>)
6:	for $i \in range(energy)$ do
7:	$child \leftarrow parent$
8:	for $j \in 1$ to sample_num_mutations() do
9:	$mutation \leftarrow sample_mutation() \rightarrow ???$
10:	$site \leftarrow sample_mutation_site()$
11:	$child \leftarrow apply_mutation(mutation, child, site)$
12:	end for
13:	$path \leftarrow execute_path(child, code)$
14:	if (<i>path</i> is new) then queue \leftarrow child
15:	end for
16:	end while

Mutation Operation	Notes
Bitflips	Flip single bit
Interesting Values	NULL, -1, 0, etc.
Addition	Add random value
Subtraction	Subtract random value
Random Value	Insert random value
Deletion	Delete from parent
Cloning	Clone/add from parent
Overwrite	Replace with random
Extra Overwrite	Extras: strings scraped
Extra Insertion	from binary

MOTIVATING EXAMPLE

Mutation Operation	Notes
Bitflips	Flip single bit
Interesting Values	NULL, -1, 0, etc.
Addition	Add random value
Subtraction	Subtract random value
Random Value	Insert random value
Deletion	Delete from parent
Cloning	Clone/add from parent
Overwrite	Replace with random
Extra Overwrite	Extras: strings scraped
Extra Insertion	from binary

// Runs the ASCII Content Server int main(void) { // Initialize server InitializeTree();

```
// Respond to commands
Command command, int more = {}, 1;
while (more) {
   ReceiveCommand(&command, &more);
   HandleCommand(&command);
```

```
return 0;
```

```
// Receives and parses an incoming command
int ReceiveCommand(Command *command, int *more) {
    char buffer[64], size_t bytes_received;
    read_until(buffer, ':', sizeof(buffer));
```

```
switch (buffer) {
    case "REQUEST": command->c = REQUEST; break;
    case "QUERY": command->c = QUERY; break;
    case "SEND": command->c = SEND; break;
    case "VISUALIZE": command->c = VISUALIZE; break;
    case "INTERACT": command->c = INTERACT; break;
    default: more = 0; return -1;
}
parse_data(command, read_rest(), more);
return 0;
```

Q: How do we identify the right mutators?

A: Learn it! Best indicator of future success is past success

PICK_MUTATION AS A MULTI-ARMED BANDIT

Multi-Armed Bandit Problem

- k "arms" (mutators), each with different probability of paying out (discovering new code path)
- Starts out unobserved
- Need to discover the "best" arm (or best distribution over arms) to maximize payout

► Requires a balance between exploration and exploitation

THOMPSON SAMPLING FOR EXPLORATION/EXPLOITATION

Exploration-Exploitation as Bayesian Posterior Estimation

- Each mutator has prior π(θ) draws parameterize
 Bernoulli distribution (0/1 reward)
- ► $\pi(\theta) \propto \theta^{\alpha-1} (1 \theta)^{\beta-1}$ (Beta-Bernoulli form)
- Collect data D for fixed interval (we used 3 minutes)
 - Count how many times each mutator was used in generating a "successful" input (S) vs otherwise (F)
- Compute Posterior with new info

► $\pi(\theta \mid D) \propto \theta^{\alpha-1+S} (1 - \theta)^{\beta-1+F}$

► Use posteriors for each arm to obtain mutator distribution

EXPERIMENTS - DARPA CGC & LAVA-M

► We test our approach on two datasets:

- ► DARPA Cyber Grand Challenge Binaries
 - ► Set of 200 binaries released by DARPA
 - ► Each binary has a real "bug" added by a human user
 - ► We utilize the 150 binaries that read from STDIN
- LAVA-M Binaries
 - ► 4 Binaries from Coreutils
 - ► Injected with 100s of synthetic bugs
 - ► If MAGIC_1 < INPUT[10:18] < MAGIC_2: Crash

EXPERIMENTS – BASELINES

- We utilize 3 baselines in comparison to our Thompson Sampling approach:
 - AFL (Vanilla): Same as original algorithm, with extra deterministic step.
 - FidgetyAFL (Havoc): Original algorithm, implements Böhme et. al Power Schedule for input selection!
 - Empirical: Test "adaptive" in Thompson Sampling
 - On 75 of CGC binaries, estimate "empirical" mutator distribution

RESULTS – CGC BINARIES

► CGC Binaries (on 75 test programs):

	6 hr	12 hr	18 hr	24 hr
AFL	0.64 ± 0.03	0.63 ± 0.03	0.63 ± 0.03	0.63 ± 0.03
FidgetyAFL	0.84 ± 0.02	0.84 ± 0.02	0.85 ± 0.02	0.84 ± 0.02
Empirical	0.85 ± 0.02	0.86 ± 0.02	0.86 ± 0.02	0.87 ± 0.02
Thompson	$\boldsymbol{0.91 \pm 0.02}$	$\boldsymbol{0.92 \pm 0.02}$	$\textbf{0.92} \pm \textbf{0.02}$	$\textbf{0.93} \pm \textbf{0.02}$

Relative Coverage Statistics (# paths discovered / max)

	Crashes	Wins / FidgetyAFL	Wins / All
AFL	554	18	4
FidgetyAFL	780	—	14
Empirical	766	41	5
Thompson	1336	52	47

Crash Statistics (Unique Paths triggering Crash)

RESULTS – LAVA–M BINARIES

► LAVA-M Binaries:

.

	base64	md5sum	uniq	who
AFL	117 ± 20	55 ± 2	13 ± 0	37 ± 1
FidgetyAFL	133 ± 10	340 ± 10	87 ± 1	372 ± 36
Empirical	134 ± 8	406 ± 22	80 ± 1	115 ± 9
Thompson	144 ± 14	405 ± 2	75 ± 2	106 ± 16

.

Number of unique code paths discovered

	base64	md5sum	uniq	who
AFL	15 ± 5	0 ± 0	0 ± 0	0 ± 0
FidgetyAFL	26 ± 9	4 ± 1	1 ± 1	201 ± 56
Empirical	22 ± 5	0 ± 0	0 ± 0	78 ± 17
Thompson	31 ± 8	1 ± 1	0 ± 0	106 ± 16

Number of unique crashes discovered

RESULTS – GRAPHS

FUTURE WORK

- Non-Stationary Distributions need to adapt sampling
- Can we get Thompson Sampling to work together with other learned/data-driven heuristics?

► Well...

	24 hr	Crashes	Wins / All
FairFuzz	0.88 ± 0.02	734	17
Thompson	$\boldsymbol{0.95\pm0.01}$	1287	49
FairFuzz + Thompson	0.57 ± 0.03	245	1

- Modeling Programs Directly how inputs behave!
 - ➤ Talk to me after about entropy ranking!

SUMMARY

- ► Grey-box Mutational Fuzzing is good, but inefficient
 - ► Heuristics are non-optimal, can lead to redundant work
- Our contribution: improve grey-box fuzzing with data-driven learning!
 - Change distribution over mutators adaptively, via Thompson Sampling - focus on mutators that matter!
 - Results show huge gains over baselines, but not perfect

Questions: Email me @ <u>sidd.karamcheti@gmail.com</u> Thank You!