ADAPTIVE GREY-BOX FUZZ-TESTING
WITH THOMPSON SAMPLING

Sidd Karamcheti, David Rosenberg, Gideon Mann
Bloomberg - CTO Data Science




FUZZING - A BACKGROUND

» Fuzzing is a technique for automated software testing.

» Core Idea: Provide programs with unexpected inputs,
with goal of finding bugs, maximizing coverage, etc.

» Different types of fuzzers and testing tools:
> Black-Box: Assume no transparency into program.
» Random generators (good for testing parsers)
» White-Box: Assume lots of transparency (e.g. KLEE)

» Suffer from path explosion as programs get big



GREY-BOX FUZZING & AFL

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

» Grey-Box Mutational

Fuzzers 1: // Core Algorithm for American Fuzzy Lop (AFL)
. . 2: // time: Fixed time window to fuzz (e.g. 24 hours)
> nghtwelght 3: // queue: Queue of inputs that exercise new code paths.
instrumentati on, to 4: while time has not elap.sed (?0
5: parent, energy <« pick_input(queue)
check code path 6 for i € range(energy) do
7: child < parent
» Mutate existing 8: for j € 1 to sample_num mutations() do
. 9: mutation < sample_mutation()
Inputs to generate 10: site < sample_mutation_site()
. 11: child <« apply_mutation(mutation, child, site)
new test mputs 1o, end for
. 13: path <« execute_path(child, code)
» Fast, efﬁc1ent, and 14: if (path is new) then queue < child
15: end for

proven - can ﬁnd 16: end while

lots of bugs
» AFL is best of the bunch!



GREY-BOX FUZZING & AFL - HEURISTICS

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

1: // Core Algorithm for American Fuzzy Lop (AFL)
2: // time: Fixed time window to fuzz (e.g. 24 hours)

3: // queue: Queue of inputs that exercise new code paths.
4: while time has not elapsed do

5. parent, energy H\{Ctﬁinpm(q@_' Weighted by scores (execution

for i € range(energy) do time, program depth)
child « parent

6

7:

8: for j € 1 toGample_num mutat@d\’

9; mutation <€ sample mutation » RANDOM!
sample_mutatlon_s@/'

10: site

11: child <« apply_mutation(mutation, child, site)
12: end for

13: path <« execute_path(child, code)

14: if (path is new) then queue < child

15: end for

16: end while




Q: How can we do better?

A: Data-Driven, Adaptive Control!



GREY-BOX FUZZING & AFL - RELATED WORK

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

1: // Core Algorithm for American Fuzzy Lop (AFL)

2: // time: Fixed time window to fuzz (e.g. 24 hours)

3: // queue: Queue of inputs that exercise new code paths.

4: while time has not elapsed do AFLFast

5: parent, energy @input(queue
: for i € range(energy) do

Coverage-Based Grey-Box Fuzzing

: child — parent Bohmeet. al, 2016
8: for j € 1 to sample_num _mutations()'do

9 mutation < sample_mutation()

10: site «— sample_mutation_site()

11: child < apply_mutation(mutation, child, site)

12: end for

13: path <« execute_path(child, code) AFLGO ‘
14: if (path is new) then queue « child Directed Greybox Fuzzing
15: end for Bohme et. al, 2017

16: end while




GREY-BOX FUZZING & AFL - RELATED WORK

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

1: // Core Algorithm for American Fuzzy Lop (AFL)
2: // time: Fixed time window to fuzz (e.g. 24 hours)

3: // queue: Queue of inputs that exercise new code paths.
4: while time has not elapsed do

5: parent, energy ec\ml/kcl((l:input(queue
: for i € range(energy) do

6
7 child « parent

8: for j € 1 to sample_num mutations()
9 mutation < sample mutation()

10: site @_mutation_site

Neural Byte Sieve for Fuzzing
Rajpal et. al., 2017

11: child <« apply_mutation(mutation\ahild, site)

e end for . FairFuzz: Targeting Rare Branches
13: path <« execute_path(child, code) t0 Ravidlv Tncrease Crevbox

14: if (path is new) then queue < child P y Y

5. end for Fuzz Testing Coverage

6. end while Lemieux and Sen, 2017




GREY-BOX FUZZING & AFL - WHAT'S NEXT?

1: // Core Algorithm for American Fuzzy Lop (AFL)

2: // time: Fixed time window to fuzz (e.g. 24 hours)

3: // queue: Queue of inputs that exercise new code paths.

4: while time has not elapsed do Mutation Operation Notes

> parent, energy «— pick_input(queue) Bitflips Flip single bit

6 for i € range(energy) do Interesting Values ~ NULL, -1, 0, etc.

7 child «— parent Addition Add random value

3 for j € 1 to sample_num mutations() do Subtraction Subtract random value

9 mutation @1 e_mutat i@—» 277 ]I;aerllici);ll Value glesleertte r;r;i;)r;a:;l;e
10: site «— sample_mutation_site() Cloning Clone/add from parent
11: child < apply_mutation(mutation, child, site)  Overwrite Replace with random
12: end for Extra Overwrite Extras: strings scraped
13: path «— execute_path(child, code) Extra Insertion from binary
14: if (path is new) then queue < child
15: end for

16: end while




// Runs the ASCII Content Server
int main(void) {

MOTlVATlNG EXAMPLE // Initialize server

InitializeTree();
// Respond to commands
Command command, int more = {3}, 1;
while (more) {
ReceiveCommand (&command, &more);

Mutation Operation Notes HandleCommand (&command) ;

e .. : }
Bitflips | Flip single bit return 0:
Interesting Values NULL, -1, 0, etc. }
Addition Add random value
Subtraction Subtract random value // Receives and parses an incoming command
Random Value Insert random value int ReceiveCommand(Command *command, int *more) {
Deletion Delete from parent char buffer[64], size_t bytes_received;
Cloning Clone/add from parent read_until (buffer, ':', sizeof(buffer));
Overwri Replace with random

switch (buffer) {

case "REQUEST": command->c = REQUEST; break;
case "QUERY": command->c = QUERY; break;

case "SEND": command->c = SEND; break;

case "VISUALIZE": command->c = VISUALIZE; break;
case "INTERACT": command->c = INTERACT; break;
default: more = 0; return -1;

Extra Overwrite
Extra Insertion

Extras: strings scraped

}
parse_data(command, read_rest(), more);
return 0;



Q: How do we identify the right mutators?

A: Learn it!
Best indicator of future success is past success



PICK_MUTATION AS A MULTI-ARMED BANDIT

» Multi-Armed Bandit Problem

> k"arms" (mutators), each with different probability of
paying out (discovering new code path)

» Starts out unobserved

» Need to discover the "best" arm (or best distribution
over arms) to maximize payout

» Requires a balance between exploration and exploitation



THOMPSON SAMPLING FOR EXPLORATION/EXPLOITATION

» Exploration-Exploitation as Bayesian Posterior Estimation

» Each mutator has prior ni(0) - draws parameterize
Bernoulli distribution (0/1 reward)

> 11(0) o« Ba-1 (1 — 0)B-1 (Beta-Bernoulli form)
» Collect data D for fixed interval (we used 3 minutes)

» Count how many times each mutator was used in
generating a "successful" input (S) vs otherwise (F)

» Compute Posterior with new info
> 11(0 | D) o« Ba-1+S (1 — Q)B—1+F

» Use posteriors for each arm to obtain mutator distribution



EXPERIMENTS - DARPA CGC & LAVA-M

» We test our approach on two datasets:
» DARPA Cyber Grand Challenge Binaries
» Set of 200 binaries released by DARPA
» Each binary has a real "bug" added by a human user
» We utilize the 150 binaries that read from STDIN
» LAVA-M Binaries
» 4 Binaries from Coreutils
» Injected with 100s of synthetic bugs

> If MAGIC 1 < INPUT[10:18] < MAGIC 2: Crash



EXPERIMENTS - BASELINES

» We utilize 3 baselines in comparison to our Thompson
Sampling approach:

» AFL (Vanilla): Same as original algorithm, with extra
deterministic step.

» FidgetyAFL (Havoc): Original algorithm, implements
Bohme et. al Power Schedule for input selection!

» Empirical: Test "adaptive" in Thompson Sampling

» On 75 of CGC binaries, estimate "empirical"
mutator distribution



RESULTS - CGC BINARIES

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

» CGC Binaries (on 75 test programs):

6 hr 12 hr 18 hr 24 hr

AFL 0.64 £0.03 063003 0.63+003 0.63 +0.03
FidgetyAFL.  0.84 £ 0.02 0.84 £0.02 0.85+ 0.02 0.84 £ 0.02
Empirical 0.85+£0.02 086 £0.02 0.86+0.02 0.87 +0.02
Thompson 0.91+0.02 0.92+0.02 0.92+0.02 0.93 +0.02

Relative Coverage Statistics (# paths discovered / max)

Crashes Wins / FidgetyAFL Wins / All

AFL 554 18 4
FidgetyAFL 780 — 14
Empirical 766 41 5
Thompson 1336 52 47

Crash Statistics (Unique Paths triggering Crash)



RESULTS - LAVA-M BINARIES

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

» [LAVA-M Binaries:

base64  md5sum unigq who
AFL 117+ 20 552 130 37=x1
FidgetyAFL 133 +10 340+10 871 372+36
Empirical 134+8 406+22 80+1 115+9
Thompson 144 +14 405+2 75+2 106=+16

Number of unique code paths discovered

base64 md5sum uniq who
AFL 15£5 00 0x0 0£0
FidgetyAFL 269 4+£1 1+x1 201+56
Empirical 22+5 00 00 78+17
Thompson 31+ 8 1+1 0+£0 10616

Number of unique crashes discovered



RE

SULTS - GRAPHS

Discovered Paths over Time for Program ASCIlI_Content_Server

400 -

300 -

200 -

Number of Unique Code Paths

100 A

-------- AFL

— — FidgetyAFL
- - - Empirical
—— Thompson

0 200 400 600 800 1000 1200 1400
Time in Minutes since Start

Number of Unique Code Paths

Discovered Paths over Time for Program Fortress

1400
-------- AFL -
— — FidgetyAFL -
- - - Empirical -7
1200 1 . Thompson ,?
/ -
/
1000 - J
r - s s wm w s o v e s e =
| PEEEEEEE
] ¢ 7
800 - -
600 -
|
400 H~ |
200 A
0 200 400 600 800 1000 1200 1400

Time in Minutes since Start




FUTURE WORK

» Non-Stationary Distributions - need to adapt sampling

» Can we get Thompson Sampling to work together with other
learned/data-driven heuristics?

> Well...
24 hr Crashes Wins / All
FairFuzz 0.88 + 0.02 734 117
Thompson 0.95 + 0.01 1287 49
FairFuzz + Thompson  0.57 + 0.03 245 1

» Modeling Programs Directly - how inputs behave!

» Talk to me after about entropy ranking!



SUMMARY

» Grey-box Mutational Fuzzing is good, but inefficient
» Heuristics are non-optimal, can lead to redundant work

» QOur contribution: improve grey-box fuzzing with data-driven
learning!

» Change distribution over mutators adaptively, via
Thompson Sampling - focus on mutators that matter!

» Results show huge gains over baselines, but not perfect

Questions: Email me @ sidd.karamcheti @gmail.com

Thank You!



mailto:sidd.karamcheti@gmail.com

