Targeted Data Acquisition for Evolving Negotiation Agents

Minae Kwon, Siddharth Karamcheti, Mariano-Florentino Cuéllar, Dorsa Sadigh

Lawyers in court

Lawyers in court

Employee negotiating salary

Lawyers in court

Employee negotiating salary

2021 UN climate change conference

Desiderata

Desiderata

(1) Agents that maximize their self-interest

Desiderata

- (1) Agents that maximize their self-interest
- (2) Agents that can compromise (find Pareto-optimal solutions)

$$L(\theta) = -\sum_{x,c} \sum_{t} \log p_{\theta}(x_{t} | x_{0:t-1}, c)$$

$$-\alpha \sum_{x,c} \sum_{j} \log p_{\theta}(o_{j} | x_{0:t-1}, c)$$

$$L(\theta) = -\sum_{x,c} \sum_{t}^{utterances} \log p_{\theta}(x_t | x_{0:t-1}, \epsilon)^{context}$$

$$-\alpha \sum_{x,c} \sum_{j} \log p_{\theta}(o_{j} | x_{0:t-1}, c)$$

$$L(\theta) = -\sum_{x,c} \sum_{t} \log p_{\theta}(x_{t} | x_{0:t-1}, c)^{context}$$

utterance prediction loss

$$-\alpha \sum_{x,c} \sum_{j} \log p_{\theta}(o_{j} | x_{0:t-1}, c)$$

final split prediction loss

$$L(\theta) = -\sum_{x,c} \sum_{t} \log p_{\theta}(x_{t} | x_{0:t-1}, c)^{context}$$

$$utterance \ prediction \ loss$$

$$-\alpha \sum_{x,c} \sum_{j} \log p_{\theta}(\sigma_{j} | x_{0:t-1}^{ith \ item}, c)$$

$$final \ split \ prediction \ loss$$

Relationship to dataset: bias inherited from dataset

Reinforcen

Negotiation

```
RL
```

Alice: insist: item0=0 item1=3 item2=1 **Bob**: propose: item0=1 item1=2 item2=0 Alice: propose: item0=1 item1=3 item2=1 **Bob**: propose: item0=1 item1=2 item2=0 Alice: propose: item0=1 item1=3 item2=1 **Bob**: propose: item0=1 item1=2 item2=0 Alice: propose: item0=1 item1=3 item2=1 **Bob** : propose: item0=1 item1=2 item2=0 Alice: propose: item0=1 item1=3 item2=1 **Bob**: propose: item0=1 item1=2 item2=0 Alice: propose: item0=1 item1=3 item2=1 **Bob** : propose: item0=1 item1=2 item2=0 Alice: propose: item0=1 item1=3 item2=1 **Bob** : propose: item0=1 item1=2 item2=0 Alice: propose: item0=1 item1=3 item2=1 **Bob**: propose: item0=1 item1=2 item2=0 Alice: propose: item0=1 item1=3 item2=1 **Bob** : propose: item0=1 item1=2 item2=0 Alice: <selection> Alice: book=1 hat=3 ball=1 **Bob**: book=1 hat=2 ball=0 Disagreement?!

Alice: 0 (potential 10) Bob: 0 (potential 7)

Alice's utterances For $x_t \in X^A$ $R_{\Delta}(x_t) = \gamma^{T-t}(r_{\Delta} - \mu_n)$ running mean

Reinforcen

Bob (fixed)

insist(1 bun, 2 pu

RL

Alice: insist: item0=0 item1=3 item2=1 **Bob**: propose: item0=1 item1=2 item2=0 Alice: propose: item0=1 item1=3 item2=1 **Bob**: propose: item0=1 item1=2 item2=0 Alice: propose: item0=1 item1=3 item2=1 **Bob**: propose: item0=1 item1=2 item2=0 Alice: propose: item0=1 item1=3 item2=1 **Bob**: propose: item0=1 item1=2 item2=0 Alice: propose: item0=1 item1=3 item2=1 **Bob** : propose: item0=1 item1=2 item2=0 Alice: propose: item0=1 item1=3 item2=1 **Bob**: propose: item0=1 item1=2 item2=0 Alice: propose: item0=1 item1=3 item2=1 **Bob**: propose: item0=1 item1=2 item2=0 Alice: propose: item0=1 item1=3 item2=1 **Bob**: propose: item0=1 item1=2 item2=0 Alice: propose: item0=1 item1=3 item2=1 **Bob** : propose: item0=1 item1=2 item2=0 Alice: <selection> Alice: book=1 hat=3 ball=1 **Bob**: book=1 hat=2 ball=0 Disagreement?!

Alice: 0 (potential 10) Bob: 0 (potential 7)

Alice's utterances For $x_t \in X^A$ $R_{\Delta}(x_t) = \gamma^{T-t}(r_{\Delta} - \mu_n)$ running mean

Relationship to dataset: Alice inherits dataset biases through Bob

Mixed RL, SL (RL+SL)

Interleave SL training every nth timestep

- n=1: RL, SL, RL, SL ...
- n=2: RL, RL, SL, RL, RL, SL ...

Mixed RL, SL (RL+SL)

Interleave SL training every nth timestep

- n=1: RL, SL, RL, SL ...
- n=2: RL, RL, SL, RL, RL, SL ...

Relationship to dataset: same as SL, bias inherited from dataset

Problem: Low-quality, static datasets!

Problem: Low-quality, static datasets!

Key Insight:

Continually improve Bob with expert data!

$$s_n = \min_{x_t \in X^A} \log p_{\theta}(x_t | x_{0:t-1}, c^A)$$

$$s_n = \min_{x_t \in X^A} \log p_{\theta}(x_t | x_{0:t-1}, c^A)$$

Alice RL Training

Pick k=500 most novel negotiations

Pick k=500 most novel negotiations

Pick k=500most novel negotiations

Alice RL Training

Pick k=500 most novel negotiations

Evaluation

Can we balance self-interest and Pareto-optimality?

Results with a Human Partner

Results with a Human Partner

Main Ideas

• Our approach balances self-interest and Pareto-optimality the best.

• This holds true against both simulated and human partners.