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Desiderata

(1) Agents that maximize their self-interest

(2) Agents that can compromise (find Pareto-optimal solutions)
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Mixed RL, SL (RL+SL)
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Interleave SL training every nth timestep
e n=1: RL, SL, RL, SL ...
* n=2: RL,RL, SL,RL,RL, SL ...

Relationship to dataset: same as SL, bias inherited from dataset



Problem: 1.ow-quality, static datasets!



Problem: 1.ow-quality, static datasets!

Key Insight:
Continually improve Bob with expert data!
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Evaluation

Can we balance self-interest and Pareto-optimality?
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Results with a Human Partner
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Main Ideas

* Our approach balances self-interest and Pareto-optimality the best.

* This holds true against both simulated and human partners.
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