Learning Adaptive Language Interfaces through Decomposition

Percy Liang

Siddharth Karamcheti

Dorsa Sadigh

I'm sorry - I don't understand! **Please teach me!**

"Wash the coffee mug"

What can I do? GOTO Mug; PICKUP Mug; PUT Mug;

.....

Learning from Decomposition

Learning from Decomposition

Interaction

Learning from Decomposition

Interaction

Online Learning

Related Work — Semantic Parsing & Interaction

Closest to our work is Voxelurn [1]

- Grammar-based semantic parsers:
 - Reliable one-shot generalization
 - Lexical flexibility
 - "Add palm tree" —> "Create a palm tree"
- Separately: Neural sequence-to-sequence models [2, 3].
 - Lexical flexibility V
 - Reliable one-shot generalization [4]

[1] Naturalizing a Programming Language via Interactive Learning — Wang et. al. 2017 [2] Data Recombination for Neural Semantic Parsing — Jia and Liang 2016 [3] From Language to Programs: Bridging Reinforcement Learning and Maximum Marginal Likelihood — Guu et. al. 2017 [4] Six Challenges for Neural Machine Translation — Koehn and Knowles 2017

def: add palm tree **def:** brown trunk height 3 **def:** add brown top 3 times repeat 3 [add brown top] **def:** go to top of tree select very top of has color brown def: add leaves here def: select all sides select left or right or front or back add green

This Work:

Applies interactive learning from decomposition, and introduces a *neural "exemplar-based" parser* that is *lexically flexible* and can *reliably generalize from limited examples*.

Critical Point:

Trust during Inference — Given a novel utterance, output "I don't understand."

This Work:

Applies interactive learning from decomposition, and introduces a *neural "exemplar-based" parser* that is *lexically flexible* and can *reliably generalize from limited examples*.

Critical Point:

Trust during Inference — Given a novel utterance, output "I don't understand."

Roadmap:

- 1. Exemplar-Based Semantic Parsing
- 2. Experiments
- 3. Limitations & Discussion

Exemplar-Based Semantic Parsing

Overview: Treat each (utterance, program) pair as a single point in a learned latent space.

Inference: Given utterance *u*, *embed u and retrieve closest "exemplar."*

Reliable Generalization: Decouple "functions"/arguments" and operate on "lifted" utterances.

Trust during Inference

2D Visualization of our learned latent space.

Trust during Inference:

Given a novel utterance, how to output "I don't understand!"

Intuition:

Set a "threshold" τ in embedding space! if CosineDistance($\phi(u), \phi(i)$) $\geq \tau \ \forall_i$ "I don't understand" return

Roadmap:

- 1. Exemplar-Based Semantic Parsing
- 2. Experiments
- 3. Limitations & Discussion

Environments & Tasks

Tasks: We borrow from ALFRED [2]:

Pick and Place Pick, Heat, and Place Examine in Light Pick, Clean, and Place Nested Pick and Place Pick, Cool, and Place **Pick Two and Place**

Simple Primitives:

GOTO (object) PUT (object, receptacle) PICKUP (object) OPEN/CLOSE (receptacle) TOGGLE (object)

[1] AI2-THOR: An Interactive 3D Environment for Visual AI — Kolve et. al. 2017 [2] ALFRED: A Benchmark for Interpreting Grounded Instructions for Everyday Tasks — Shridhar et. al. 2020

Environment: We use a simplified (2D) version of the AI2-THOR Simulation Environment [1]

Results — Multi-Task [20 Users x 7 Task Types]

Normalized Episode Length How many utterances does it take a user to complete a task?

(Lower is better!)

Baseline: Seq2Seq + Backoff Grammar

Seq2seq models are unpredictable when trained with *limited data* — leverage backoff grammar:

• Grammar-based parser for "simple" instructions. Seq2Seq responsible for "high-level" language!

Takeaway: Users don't seem to be *teaching or re-using* new high-level language!

 For seq2seq-grammar baseline —> 89.9% of all utterances handled by grammar!

Users are not incentivized to teach ...

... in simple tasks.

Results — Pick, Cool, and Place [3 Users]

Normalized Episode Length How many utterances does it take a user to complete a task?

Takeaways:

- Normalized Length ~0.3
- Users are able to:
 - Reuse high-level abstractions.
 - Complete tasks in 1/3 of the time!
 - Less reliance on simple utterances.

Roadmap:

- 1. Exemplar-Based Semantic Parsing
- 2. Experiments
- 3. Limitations & Discussion

Discussion, Limitations, and Looking Forward

Towards More Complex Settings

- Simple settings, users take the "shortest path."
- We need environments where there is a "natural" incentive" to teach nested abstractions!
 - Minecraft
 - Cooking (a la EPIC-KITCHENS [1])

On Trusting Interactive Learning

- What is the system learning?
 - "Wash the mug" —> "Wash the countertop?"
- We need tools for transparency and reliability!

Setup for EPIC-KITCHENS [1], a free-form cooking domain where the use and definition of nested abstractions ("peel the apples," "make some pie crust") are naturally incentivized.

If you have questions/comments/helpful tips, feel free to email me — <u>skaramcheti@cs.stanford.edu</u>

