Learning Adaptive Language Interfaces through Decomposition
“Wash the coffee mug”

I’m sorry – I don’t understand!
Please teach me!
Learning from Decomposition

Interaction

Wash the coffee mug

I’m sorry – I don’t understand!

Go to the mug and pick it up

Go to the sink and put it inside

Turn on the faucet

Turn it off

Pick up the mug
Learning from Decomposition

Interaction

- Wash the coffee mug
- I’m sorry – I don’t understand!
- Go to the mug and pick it up
- Go to the sink and put it inside
- Turn on the faucet
- Turn it off
- Pick up the mug
- ...

Teaching

- Wash the coffee mug
- GOTO Mug; PICKUP Mug
- GOTO Sink; PUT Mug Sink
- TOGGLE Faucet
- TOGGLE Faucet
- TOGGLE Faucet
- PICKUP Mug

Decompose into simpler steps!
Learning from Decomposition

Interaction

Wash the coffee mug

I'm sorry - I don't understand!

Go to the mug and pick it up

Go to the sink and put it inside

Turn on the faucet

Turn it off

Pick up the mug

Teaching

Wash the coffee mug

Decompose into simpler steps!

GOTO Mug; PICKUP Mug

GOTO Sink; PUT Mug Sink

TOGGLE Faucet

TOGGLE Faucet

PICKUP Mug

Online Learning

Model

Historical Interaction Data (Single-User)
Related Work — Semantic Parsing & Interaction

- Closest to our work is Voxelurn [1]
 - Grammar-based semantic parsers:
 - **Reliable one-shot generalization** ✓
 - **Lexical flexibility** ❌
 - “Add palm tree” → “Create a palm tree”

- Separately: **Neural sequence-to-sequence models** [2, 3].
 - **Lexical flexibility** ✓
 - **Reliable one-shot generalization** [4] ❌

[1] Naturalizing a Programming Language via Interactive Learning — Wang et. al. 2017
[3] From Language to Programs: Bridging Reinforcement Learning and Maximum Marginal Likelihood — Guu et. al. 2017
This Work:

Applies interactive learning from decomposition, and introduces a neural "exemplar-based" parser that is lexically flexible and can reliably generalize from limited examples.

Critical Point:

Trust during Inference — Given a novel utterance, output “I don’t understand.”
This Work:

Applies interactive learning from decomposition, and introduces a neural “exemplar-based” parser that is lexically flexible and can reliably generalize from limited examples.

Critical Point:

Trust during Inference — Given a novel utterance, output “I don’t understand.”
Roadmap:

1. Exemplar-Based Semantic Parsing
2. Experiments
3. Limitations & Discussion
Exemplar-Based Semantic Parsing

Overview: Treat each (utterance, program) pair as a single point in a learned latent space.

\[\phi(i), \phi(j) \]

Embedding Network

- \(i: \text{Find an apple} \)
- \(j: \text{Grab an apple} \)

Cosine Similarity

\[\sigma \]

1 [same program]

0 [different]

Inference: Given utterance \(u \), embed \(u \) and retrieve closest “exemplar.”

\[\text{GOTO Apple}; \text{ PICKUP Apple} \]

\[\text{GOTO <OBJ>}; \text{ PICKUP <OBJ>} \]

Reliable Generalization: Decouple “functions”/arguments” and operate on “lifted” utterances.
Trust during Inference:

Given a novel utterance, how to output “I don’t understand!”

Intuition:

Set a “threshold” τ in embedding space!

$$\text{if } \cosineDistance(\phi(u), \phi(i)) \geq \tau \ \forall i$$

return “I don’t understand”
Roadmap:

1. Exemplar-Based Semantic Parsing
2. Experiments
3. Limitations & Discussion
Environments & Tasks

Environment: We use a simplified (2D) version of the AI2-THOR Simulation Environment [1]

Tasks: We borrow from ALFRED [2]:

- Pick and Place
- Examine in Light
- Nested Pick and Place
- Pick Two and Place
- Pick, Heat, and Place
- Pick, Clean, and Place
- Pick, Cool, and Place

Simple Primitives:

- GOTO (object)
- PICKUP (object)
- TOGGLE (object)
- PUT (object, receptacle)
- OPEN/CLOSE (receptacle)

Results — Multi-Task [20 Users x 7 Task Types]

Takeaway: Users don't seem to be teaching or re-using new high-level language!

• For seq2seq-grammar baseline —> 89.9% of all utterances handled by grammar!

Baseline: Seq2Seq + Backoff Grammar

Seq2seq models are unpredictable when trained with limited data — leverage backoff grammar:

• Grammar-based parser for “simple” instructions.
• Seq2Seq responsible for “high-level” language!

Normalized Episode Length

How many utterances does it take a user to complete a task?

(Lower is better!)
Users are not incentivized to teach...

...in simple tasks.
Results — Pick, Cool, and Place [3 Users]

Normalized Episode Length
How many utterances does it take a user to complete a task?

Takeaways:
- Normalized Length ≈ 0.3
- Users are able to:
 - Reuse high-level abstractions.
 - Complete tasks in 1/3 of the time!
 - Less reliance on simple utterances.

[Chart showing comparison between exemplar-based (ours) and seq2seq-grammar (baseline) normalized episode lengths]
Roadmap:

1. Exemplar-Based Semantic Parsing
2. Experiments
3. Limitations & Discussion
Towards More Complex Settings

- Simple settings, users take the “shortest path.”
- We need environments where there is a “natural incentive” to teach nested abstractions!
 - Minecraft
 - Cooking (a la EPIC-KITCHENS [1])

On Trusting Interactive Learning

- What is the system learning?
 - “Wash the mug” —> “Wash the countertop?”
- We need tools for transparency and reliability!

Setup for EPIC-KITCHENS [1], a free-form cooking domain where the use and definition of nested abstractions (“peel the apples,” “make some pie crust”) are naturally incentivized.

[1] The EPIC-KITCHENS Dataset — Damen et. al. 2018
Interaction

Wash the coffee mug

I’m sorry – I don’t understand!

Go to the mug and pick it up

Go to the sink and put it inside

Turn on the faucet

Turn it off

Pick up the mug

Teaching

Wash the coffee mug

GOTO Mug; PICKUP Mug

GOTO Sink; PUT Mug Sink

TOGGLE Faucet

TOGGLE Faucet

TOGGLE Faucet

PICKUP Mug

Decompose into simpler steps!

Model

Historical Interaction Data (Single-User)

Online Learning

Thanks so much!

If you have questions/comments/helpful tips, feel free to email me — skaramcheti@cs.stanford.edu