Improving Grey-Box Fuzzing by Modeling Program Control Flow

Siddharth Karamcheti, Gideon Mann, David Rosenberg Bloomberg - CTO Data Science

- Use Machine Learning to Intelligently Hunt Bugs in Programs

- Learn Models of Program Behavior & Exploit Them

Fuzzing - A Background

- → **Fuzzing** is a technique for automated software testing.
 - Core Idea: Provide programs with unexpected inputs, with goal of finding bugs, maximizing coverage, etc.
- → Different types of fuzzers and testing tools:
 - Black-Box: Assume no transparency into program.
 - Random generators (good for testing parsers)
 - White-Box: Assume lots of transparency (e.g. KLEE)
 - Suffer from path explosion as programs get big

Grey-Box Mutational Fuzzers & AFL

→ Grey-Box Mutational Fuzzers

- Mutate existing seed(s) to generate new test inputs
- Light instrumentation, to check code paths
- Execute test input, add to set of seeds if new behavior
- → AFL is best of the bunch!
 - Uses heuristics to pick inputs
 - Randomness for mutations

1: //	Core Algorithm for American Fuzzy Lop (AFL)			
2: //	:: // time: Fixed time window to fuzz (e.g. 24 hours)			
3: //	3: // queue: Queue of inputs that exercise new code paths.			
4: W	a: while <i>time</i> has not elapsed do			
5:	<pre>parent, energy ← pick_input(queue)</pre>			
6:	for $i \in range(energy)$ do			
7:	$child \leftarrow parent$			
8:	for $j \in 1$ to sample_num_mutations() do			
9:	$mutation \leftarrow sample_mutation()$			
10:	$site \leftarrow sample_mutation_site()$			
11:	$child \leftarrow apply_mutation(mutation, child, site)$			
12:	end for			
13:	$path \leftarrow execute_path(child, code)$			
14:	if (<i>path</i> is new) then queue \leftarrow child			
15:	end for			
16: end while				

Related Work - Improving Grey-Box Fuzzing

AFL relies on heuristics,	1: 2: 3:	<pre>// Core Algorithm for American Fuzzy Lop (AFL) // time: Fixed time window to fuzz (e.g. 24 hours) // queue: Queue of inputs that exercise new code paths.</pre>	AFLFast Böhme et al, 2016
randomness, and scale	4:	white time has not elapsed do	
to find bugs	5:	parent, energy + pick_input(queue)	
3	6:	for $i \in range(energy)$ do	Fuzzing by
	7:	$child \leftarrow parent$	Thompson Sampling
	8:	for $j \in 1$ to sample_num_mutations() do	Karamcheti et al, 2018
Q: Can we be more	9:	$mutation \leftarrow sample_mutation()$	
efficient?	10:	$site \leftarrow sample_mutation_site()$	
	11:	$child \leftarrow apply_mutation(mutation, child, site)$	FairFuzz
A: Yes, with data-driven	12:	end for	Lemieux and Sen. 2017
control!	13:	$path \leftarrow execute_path(child, code)$	
	14:	if (<i>path</i> is new) then queue \leftarrow child	
	15:	end for	and many many
	16:	end while	more!

Problem: Wasteful Executions

→ Generating millions -> billions of inputs and executing all of them

- Fine when program execution is cheap/fast
- Of billions of inputs generated, maybe only a couple hundred are useful!

→ Let's reframe AFL...

- Break into two phases
 - i. Generate: Generate a large number of inputs without execution
 - Lightning Fast just string manipulation
 - ii. Execute: Pick some subset of these inputs to execute
 - Expensive depends on the program under test

Q: How do we learn which inputs to execute?

A: Focus on inputs we can't characterize or understand!

Fuzzing by Modeling Program Behavior

Learning Prediction Models

- → Learn mappings of inputs (strings) to program paths!
 - For every input AFL executes, it stores the set of control flow graph edges traversed.
 - Treat string input as x, set of edges as y
 - Fit a model using a classifier of your choice —> just needs to output probabilities!
 - Can update model online! After executing new inputs, train on resulting data!
- → In our work, we keep it simple
 - Featurizer: Bag of Bytes (0 255) for encoding input strings
 - Classifier: Logistic Regression

Critical Point: Ranking Inputs by Entropy

- → We have a model that maps inputs to a distribution over control flow paths
 ♦ What now?
- → Run generated inputs through our model!
 - Look at the probability distribution over possible code paths
 - If high-entropy crucial input means our model isn't sure
 - Two Benefits to Execution
 - Could traverse new code path (or hit a bug!)
 - Improve our model by re-training
 - If low-entropy *discard* we know it is redundant

Framework Pseudocode:

- 1: // Algorithm for AFL + Program Modeling
- 2: // afl: Instance of AFL for generating/executing inputs
- 3: // iterations: Fixed number of generation iterations
- 4: // num_generate: New inputs to generate each iteration
- 5: // α : Fraction of generated inputs to execute each iteration
- 6: // queue: Queue of inputs that exercise new code paths
- 7: // model: Predicts distribution over execution paths for an input
- 8: // ranker: Given predictions, ranks by entropy values (high low)
- 9: for $i \in range(iterations)$ do
- 10: $generated \leftarrow afl.generate(queue, num_generate)$
- 11: *execute* := []
- 12: **for** $g \in generated$ **do**
- 13: $execute \leftarrow model.predict(g)$
- 14: **end for**
- 15: $execute \leftarrow ranker.rank(execute)$
- 16: **for** $j \in \text{range}(\alpha \cdot num_generate)$ **do**
- 17: $queue, path \leftarrow afl.execute(queue, execute[j])$
- 18: $model \leftarrow model.retrain(execute[j], path)$
- 19: end for
- 20: **end for**

Preliminary Experiments – Datasets

- → We use the DARPA Cyber Grand Challenge Binaries
 - Set of 200 binaries released for testing bug discovery + patching
 - Each binary has a bug added by a human user (meant to be somewhat "realistic" as opposed to synthetically injected bugs)
 - Due to time constraints, we evaluate on a subset of 24 of these binaries

Preliminary Experiments – Baselines

- → We use the following procedure across all experiments:
 - Run AFL for 3 minutes to warm-start/populate queue.
 - Start the following 4 Strategies using the resulting queue:
 - i. AFL: Generates an input then immediately executes
 - ii. Batch-AFL: Meant to mimic our program modeling procedure.
 - Generate 50,000 inputs, execute the first 5000 (slightly different than standard AFL due to the heuristic sampling seed inputs)
 - iii. Random Batch-AFL: Generate 50,000 inputs, select random 5000
 - iv. ML/Logistic Regression: Generate 50,000, use model to pick 5000

Results on 24 CGC Binaries

True Wisdom is Knowing What You Don't Know

Summary

Questions: Email me @ sidd.karamcheti@gmail.com

Thanks for listening!