Improving Grey-Box Fuzzing by
Modeling Program Control Flow

Siddharth Karamcheti, Gideon Mann, David Rosenberg
Bloomberg - CTO Data Science

- Use Machine Learning to
Intelligently Hunt Bugs in Programs

- Learn Models of Program Behavior &
Exploit Them

Fuzzing - A Background

- Fuzzing is a technique for automated software testing.
& Core Idea: Provide programs with unexpected inputs, with goal of finding
bugs, maximizing coverage, etc.

-> Different types of fuzzers and testing tools:
€ Black-Box: Assume no transparency into program.
e Random generators (good for testing parsers)
€ White-Box: Assume lots of transparency (e.g. KLEE)
e Suffer from path explosion as programs get big

Grey-Box Mutational Fuzzers & AFL

-> Grey-Box Mutational Fuzzers
€ Mutate existing seed(s) to
generate new test inputs
€ Light instrumentation, to
check code paths
€ Execute test input, add to set
of seeds if new behavior
-> AFL is best of the bunch!
€@ Uses heuristics to pick inputs
€ Randomness for mutations

1: // Core Algorithm for American Fuzzy Lop (AFL)
2: // time: Fixed time window to fuzz (e.g. 24 hours)

3: // queue: Queue of inputs that exercise new code paths.
4: while time has not elapsed do

5 parent,enerqgy <« pick_input(queue)

6 for i € range(energy) do

7 child « parent

8: for j € 1to sample_num_mutations() do

9 mutation <« sample_mutation()

10: site « sample_mutation_site()

11: child « apply_mutation(mutation, child, site)
12: end for

13: path « execute_path(child, code)

14: if (path is new) then queue « child

15: end for

16: end while

Related Work - Improving Grey-Box Fuzzing

1: // Core Algorithm for American Fuzzy Lop (AFL)
2: // time: Fixed time window to fuzz (e.g. 24 hours)

3 // queue: Queue of inputs that exercise new code paths.

e-time has not elapsed d 0

Chice o>

AFLFast
Bohme et al, 2016

AFL relies on heuristics,
randomness, and scale 4 Wi
to find bugs

parent, energy
for i € range(energy) do

5
6 Fuzzing by
7: child « parent

8

9

Thompson Sampling
for j € 1 to sample_num mutations() do Karamcheti et al, 2018
sample mutation()>

Sample mutation_site()>

Q: Can we be more ; mutation
efficient? 10: site

11: child < apply_mutation(mutation, chila FairFuzz
A: Yes, with data-driven 1o end for Lemieux and Sen. 2017
control! 13: path « execute_path(child, code) '
14: if (path is new) then queue < child
15: end for .. and many many
more!

16: end while

Problem: Wasteful Executions

-> Generating millions -> billions of inputs and executing all of them
€ Fine when program execution is cheap/fast
& Of billions of inputs generated, maybe only a couple hundred are useful!

=> Let'’s reframe AFL...
€ Break into two phases
i. Generate: Generate a large number of inputs without execution
o Lightning Fast - just string manipulation
ii. Execute: Pick some subset of these inputs to execute
o Expensive - depends on the program under test

Q: How do we learn which inputs to
execute?

A: Focus on inputs we can’t characterize
or understand!

Fuzzing by Modeling Program Behavior

v 5) 4)

High Entr >
etk Program
Execute Monitored by AFL
AFL el Entropy) /] . Medium ; »> Inputs added to
Hodl - AN queue i they resul
/ \ e in increased code
ﬁ Generated Inputs ! Low : coverage

. Entropy _ |

% / Discard \ j

o

Given input, predict distribution over
program paths, then compute score
(entropy of distribution).

Input Queue

Learning Prediction Models

- Learn mappings of inputs (strings) to program paths!

¢

L 4
L 4

L 4

For every input AFL executes, it stores the set of control flow graph edges
traversed.

Treat string input as x, set of edges as y

Fit a model using a classifier of your choice —> just needs to output
probabilities!

Can update model online! After executing new inputs, train on resulting
data!

=> In our work, we keep it simple

\ 4
\ g

Featurizer: Bag of Bytes (0 - 255) for encoding input strings
Classifier: Logistic Regression

Critical Point: Ranking Inputs by Entropy

-> We have a model that maps inputs to a distribution over control flow paths
€ What now?

-> Run generated inputs through our model!
€ Look at the probability distribution over possible code paths
e If high-entropy - crucial input - means our model isn't sure
o Two Benefits to Execution
€ Could traverse new code path (or hit a bug!)
€ Improve our model by re-training
e If low-entropy - discard - we know it is redundant

Framework Pseudocode:

S B A LR~ - B

L e o
- L - 4

18:

// Algorithm for AFL + Program Modeling
// afl: Instance of AFL for generating/executing inputs
// iterations: Fixed number of generation iterations
// num_generate: New inputs to generate each iteration
// a: Fraction of generated inputs to execute each iteration
// queue: Queue of inputs that exercise new code paths
// model: Predicts distribution over execution paths for an input
// ranker: Given predictions, ranks by entropy values (high - low)
for i € range(iterations) do
generated «— afl.generate(queue, num_generate)
execute := []
for g € generated do
execute <« model.predict(g)
end for
execute « ranker.rank(execute)
for j € range(a- num_generate) do
queue, path < afl.execute(queue, execute[j])
model «— model.retrain(execute[j], path)
end for

. end for

Preliminary Experiments - Datasets

-> We use the DARPA Cyber Grand Challenge Binaries
€ Set of 200 binaries released for testing bug discovery + patching

€ Each binary has a bug added by a human user (meant to be somewhat
“realistic” as opposed to synthetically injected bugs)

€ Due to time constraints, we evaluate on a subset of 24 of these binaries

Preliminary Experiments - Baselines

-> We use the following procedure across all experiments:
€ Run AFL for 3 minutes to warm-start/populate queue.
€ Start the following 4 Strategies using the resulting queue:
i. AFL: Generates an input then immediately executes
ii. Batch-AFL: Meant to mimic our program modeling procedure.
o Generate 50,000 inputs, execute the first 5000 (slightly different
than standard AFL due to the heuristic sampling seed inputs)
iii. Random Batch-AFL: Generate 50,000 inputs, select random 5000
iv. ML/Logistic Regression: Generate 50,000, use model to pick 5000

Results on 24 CGC

Binaries

Relative Coverage over Executions for Program Flash_File_System

AFL
1.2 - .- Batch_AFL
- - Random
— ML
1.0
8,0.81
o
(]
>
o
O
206+
©
]
x
0.4
0.2
0.0

10000 20000 30000 40000 50000 60000
Number of Executions

Relative Coverage

Relative Coverage over 50000 Executions for 24 Binaries

1.0
AFL
-+ - Batch AFL
- — Random
0.9 —— Bigram Logistic Regression

04
5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Number of Executions

True Wisdom is Knowing What You
Don’t Know

-Confucius

Summary

v ™\) e R

High Entr: >

A Program

———— | Execute Monitored by AFL
AFL Etediction Entropy N] | Medium > Inputs added to

Hodd e I W queue ifthey resul
/ \ ,,,,,,,,,,,,, in increased code

Generated Inputs ' Low _ coverage

> « Entropy |

\ / ;} Discard \ /

Given input, predict distribution over
program paths, then compute score
(entropy of distribution).

Input Queue

Questions: Email me @ sidd.karamcheti@gmail.com

Thanks for listening!

mailto:sidd.karamcheti@gmail.com

