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- Use Machine Learning to
Intelligently Hunt Bugs in Programs

- Learn Models of Program Behavior &
Exploit Them



Fuzzing - A Background

- Fuzzing is a technique for automated software testing.
& Core Idea: Provide programs with unexpected inputs, with goal of finding
bugs, maximizing coverage, etc.

-> Different types of fuzzers and testing tools:
€ Black-Box: Assume no transparency into program.
e Random generators (good for testing parsers)
€ White-Box: Assume lots of transparency (e.g. KLEE)
e Suffer from path explosion as programs get big



Grey-Box Mutational Fuzzers & AFL

-> Grey-Box Mutational Fuzzers
€ Mutate existing seed(s) to
generate new test inputs
€ Light instrumentation, to
check code paths
€ Execute test input, add to set
of seeds if new behavior
-> AFL is best of the bunch!
€@ Uses heuristics to pick inputs
€ Randomness for mutations

1: // Core Algorithm for American Fuzzy Lop (AFL)
2: // time: Fixed time window to fuzz (e.g. 24 hours)

3: // queue: Queue of inputs that exercise new code paths.
4: while time has not elapsed do

5 parent,enerqgy <« pick_input(queue)

6 for i € range(energy) do

7 child « parent

8: for j € 1to sample_num_mutations() do

9 mutation <« sample_mutation()

10: site « sample_mutation_site()

11: child « apply_mutation(mutation, child, site)
12: end for

13: path « execute_path(child, code)

14: if (path is new) then queue « child

15: end for

16: end while




Related Work - Improving Grey-Box Fuzzing

1: // Core Algorithm for American Fuzzy Lop (AFL)
2: // time: Fixed time window to fuzz (e.g. 24 hours)

3 // queue: Queue of inputs that exercise new code paths.
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control! 13: path « execute_path(child, code) '
14: if (path is new) then queue < child
15:  end for .. and many many
more!

16: end while




Problem: Wasteful Executions

-> Generating millions -> billions of inputs and executing all of them
€ Fine when program execution is cheap/fast
& Of billions of inputs generated, maybe only a couple hundred are useful!

=> Let'’s reframe AFL...
€ Break into two phases
i. Generate: Generate a large number of inputs without execution
o Lightning Fast - just string manipulation
ii. Execute: Pick some subset of these inputs to execute
o Expensive - depends on the program under test



Q: How do we learn which inputs to
execute?

A: Focus on inputs we can’t characterize
or understand!



Fuzzing by Modeling Program Behavior
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Learning Prediction Models

- Learn mappings of inputs (strings) to program paths!
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For every input AFL executes, it stores the set of control flow graph edges
traversed.

Treat string input as x, set of edges as y

Fit a model using a classifier of your choice —> just needs to output
probabilities!

Can update model online! After executing new inputs, train on resulting
data!

=> In our work, we keep it simple
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Featurizer: Bag of Bytes (0 - 255) for encoding input strings
Classifier: Logistic Regression



Critical Point: Ranking Inputs by Entropy

-> We have a model that maps inputs to a distribution over control flow paths
€ What now?

-> Run generated inputs through our model!
€ Look at the probability distribution over possible code paths
e If high-entropy - crucial input - means our model isn't sure
o Two Benefits to Execution
€ Could traverse new code path (or hit a bug!)
€ Improve our model by re-training
e If low-entropy - discard - we know it is redundant



Framework Pseudocode:
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// Algorithm for AFL + Program Modeling
// afl: Instance of AFL for generating/executing inputs
// iterations: Fixed number of generation iterations
// num_generate: New inputs to generate each iteration
// a: Fraction of generated inputs to execute each iteration
// queue: Queue of inputs that exercise new code paths
// model: Predicts distribution over execution paths for an input
// ranker: Given predictions, ranks by entropy values (high - low)
for i € range(iterations) do
generated «— afl.generate(queue, num_generate)
execute := []
for g € generated do
execute <« model.predict(g)
end for
execute « ranker.rank(execute)
for j € range(a- num_generate) do
queue, path < afl.execute(queue, execute[j])
model «— model.retrain(execute[j], path)
end for

. end for




Preliminary Experiments - Datasets

-> We use the DARPA Cyber Grand Challenge Binaries
€ Set of 200 binaries released for testing bug discovery + patching

€ Each binary has a bug added by a human user (meant to be somewhat
“realistic” as opposed to synthetically injected bugs)

€ Due to time constraints, we evaluate on a subset of 24 of these binaries



Preliminary Experiments - Baselines

-> We use the following procedure across all experiments:
€ Run AFL for 3 minutes to warm-start/populate queue.
€ Start the following 4 Strategies using the resulting queue:
i. AFL: Generates an input then immediately executes
ii. Batch-AFL: Meant to mimic our program modeling procedure.
o Generate 50,000 inputs, execute the first 5000 (slightly different
than standard AFL due to the heuristic sampling seed inputs)
iii. Random Batch-AFL: Generate 50,000 inputs, select random 5000
iv. ML/Logistic Regression: Generate 50,000, use model to pick 5000



Results on 24 CGC

Binaries
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True Wisdom is Knowing What You
Don’t Know

-Confucius



Summary
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Questions: Email me @ sidd.karamcheti@gmail.com

Thanks for listening!
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