
Improving Grey-Box Fuzzing by 
Modeling Program Control Flow

Siddharth Karamcheti, Gideon Mann, David Rosenberg
Bloomberg - CTO Data Science



- Use Machine Learning to 
Intelligently Hunt Bugs in Programs

- Learn Models of Program Behavior & 
Exploit Them



Fuzzing - A Background

➔ Fuzzing is a technique for automated software testing.
◆ Core Idea: Provide programs with unexpected inputs, with goal of finding 

bugs, maximizing coverage, etc.

➔ Different types of fuzzers and testing tools:
◆ Black-Box: Assume no transparency into program.

● Random generators (good for testing parsers)
◆ White-Box: Assume lots of transparency (e.g. KLEE)

● Suffer from path explosion as programs get big



Grey-Box Mutational Fuzzers & AFL

➔ Grey-Box Mutational Fuzzers
◆ Mutate existing seed(s) to 

generate new test inputs
◆ Light instrumentation, to 

check code paths
◆ Execute test input, add to set 

of seeds if new behavior
➔ AFL is best of the bunch!

◆ Uses heuristics to pick inputs
◆ Randomness for mutations



Related Work - Improving Grey-Box Fuzzing

FairFuzz
Lemieux and Sen, 2017

AFLFast
Böhme et al, 2016

Fuzzing by 
Thompson Sampling
Karamcheti et al, 2018

AFL relies on heuristics, 
randomness, and scale 
to find bugs

Q: Can we be more 
efficient?

A: Yes, with data-driven 
control!

... and many many 
more!



Problem: Wasteful Executions

➔ Generating millions -> billions of inputs and executing all of them
◆ Fine when program execution is cheap/fast
◆ Of billions of inputs generated, maybe only a couple hundred are useful!

➔ Let’s reframe AFL...
◆ Break into two phases

i. Generate: Generate a large number of inputs without execution
○ Lightning Fast - just string manipulation

ii. Execute: Pick some subset of these inputs to execute
○ Expensive - depends on the program under test



Q: How do we learn which inputs to 
execute?

A: Focus on inputs we can’t characterize 
or understand!



Fuzzing by Modeling Program Behavior



Learning Prediction Models

➔ Learn mappings of inputs (strings) to program paths!
◆ For every input AFL executes, it stores the set of control flow graph edges 

traversed.
◆ Treat string input as x, set of edges as y
◆ Fit a model using a classifier of your choice —> just needs to output 

probabilities!
◆ Can update model online! After executing new inputs, train on resulting 

data!
➔ In our work, we keep it simple

◆ Featurizer: Bag of Bytes (0 - 255) for encoding input strings
◆ Classifier: Logistic Regression



Critical Point: Ranking Inputs by Entropy

➔ We have a model that maps inputs to a distribution over control flow paths
◆ What now?

➔ Run generated inputs through our model!
◆ Look at the probability distribution over possible code paths

● If high-entropy - crucial input - means our model isn’t sure
○ Two Benefits to Execution

◆ Could traverse new code path (or hit a bug!)
◆ Improve our model by re-training

● If low-entropy - discard - we know it is redundant



Framework Pseudocode:



Preliminary Experiments - Datasets

➔ We use the DARPA Cyber Grand Challenge Binaries
◆ Set of 200 binaries released for testing bug discovery + patching

◆ Each binary has a bug added by a human user (meant to be somewhat 
“realistic” as opposed to synthetically injected bugs)

◆ Due to time constraints, we evaluate on a subset of 24 of these binaries



Preliminary Experiments - Baselines

➔ We use the following procedure across all experiments:
◆ Run AFL for 3 minutes to warm-start/populate queue.
◆ Start the following 4 Strategies using the resulting queue:

i. AFL: Generates an input then immediately executes
ii. Batch-AFL: Meant to mimic our program modeling procedure. 

○ Generate 50,000 inputs, execute the first 5000 (slightly different 
than standard AFL due to the heuristic sampling seed inputs)

iii. Random Batch-AFL: Generate 50,000 inputs, select random 5000
iv. ML/Logistic Regression: Generate 50,000, use model to pick 5000



Results on 24 CGC Binaries



True Wisdom is Knowing What You 
Don’t Know

-Confucius



Summary

Questions: Email me @ sidd.karamcheti@gmail.com 

Thanks for listening!

mailto:sidd.karamcheti@gmail.com

